Presenters do not have a financial interest/arrangement with one or more organization that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.
Case

- 54 YO M with no PMH or Hospitalizations
- Went to bed at 6:00 in normal state and woke up at 14:00 with facial drooping, dysphagia, dysarthria and generalized weakness
- Denied CP, SOB, HA, and changes in vision. The patient reports no recent infection and no prior stroke.
- Does not see a doctor regularly. Denies ever having routine screening or blood work
- No recent or past history of seizure, trauma, or syncope.
Additional History

- Umbilical Hernia repair 4 years prior
- No allergies or current medications
- Family history significant for:
 - Father (87) - DMII; atrial fibrillation; MI at age 75
 - Mother (83) - Atrial fibrillation; otherwise healthy
- Single, never married, no children, not sexually active
- Lives with his parents. Able to all perform ADL’s
- Previously in Army/Air Force
- Denies current or past use of cigarettes, alcohol or recreational drugs
Physical Examination:

- **VITALS:** 130/73mmHg, HR 70, RR 18, temp 98.1°F-oral, 97% O2 sat on room air
- **GENERAL:** Well-developed, well-nourished male, AAOx3
- **HEENT:** NC/AT, Moist mucosa, no LA or JVD
- **HEART:** RRR, No MGR
- **LUNGS:** CTA BL
- **ABDOMEN:** ND/NT, +BS
- **MUSCULOSKELETAL:** no muscle atrophy, no joint redness or swelling
Physical Examination:

- VASCULAR: 2+ DP pulses bilaterally, no edema
- NEUROLOGIC: good visual acuity, PERRL, EOMI, sensation intact throughout all 3 divisions of the face, muscles of mastication in tact, **facial drooping on the left side which spares the forehead**; uvula midline, no deviation of tongue, strength 5/5 throughout; Speech fluent and appropriate
Differential Diagnosis

- TIA
- Stroke
- Seizure
- Infection
- Malignancy
- Psychiatric
- Bell’s Palsy
Work Up

- CBC
- CMP
- CXR
- EKG
- UA
- Drug Screen
- TSH
- HbA1c

- Coagulation Profile
- ESR
- Lipid Panel
- CT Brain
- Perfusion Scan
- TTE/TEE
- Carotid Doppler
- CT Neck Angio
Types of Strokes

- **Ischemic Stroke 83%**
 - Cryptogenic 30%
 - Lacunar 25%
 - Atheroembolic 20%
 - Embolic 20%

- **Hemorrhagic Stroke 17%**
 - Intracerebral Hemorrhage 59%
 - Subarachnoid Hemorrhage 41%
Ischemic Stroke

- Large Vessel: 30%
- Small Vessel: 15%
- Other: 20%
- Cryptogenic Stroke: 30%
- Cardioembolic: 5%
Cryptogenic Stroke

- 30 to 40 percent of ischemic strokes
- ~800,000 new or recurrent strokes yearly
- 690,000 ischemic strokes every year in the US
- Approximately 200,000 cryptogenic strokes (CS) annually
Epidemiology And Risk Factors

- Age
- Gender
- Race and ethnicity
- Atrial septal abnormalities
- Cardiac disease
- Diabetes
- Family history
- Hypertension
- Homocysteine
- Inflammatory and infectious causes
- Lipids
- Prior TIA
- Pulmonary shunts
- Smoking
Pathogenesis

- Occult cardiac embolism secondary to paroxysmal atrial fibrillation, aortic atheromatous disease, or other cardiac sources
- Paradoxical embolism secondary to patent foramen ovale (PFO) or other atrial septal abnormalities
- Thrombophilia (hypercoagulable states including those related to antiphospholipid antibodies or to occult cancer with hypercoagulability of malignancy)
- Preclinical or subclinical cerebrovascular disease (ie, intracranial and extracranial vascular changes)
- Potentially inflammatory processes (e.g, elevated C-reactive protein or chronic infections)
Treatment of Strokes

- Ischemic Strokes:
 - tPA within 3 hours (and up to 4.5 hours in certain eligible patients) for ischemic strokes
 - Mechanical thrombectomy, within six hours of acute stroke symptoms, and only after a patient receives tPA.
 - Acute management of cryptogenic stroke should not differ from other ischemic stroke subtypes.

- Hemorrhagic Strokes:
 - Anticonvulsants - To prevent seizure recurrence
 - Antihypertensive agents - To reduce BP and other risk factors of heart disease
 - Osmotic diuretics - To decrease intracranial pressure in the subarachnoid space
Patent Foramen Ovalis

- Required during fetal development to allow oxygenated blood to flow from the RA to the LA.
Patent Foramen Ovale

- Fusion usually occurs by age 2
- Complete closure occurs in 75%
- Remaining 25% having a PFO
Atrial Septal Aneurysm

- Defined as a redundant and mobile tissue in the area of the fossa ovalis.
- Rare. Prevalence is <2%.
- Usually an incidental finding on routine TTE.
- Commonly asymptomatic.
- Most likely to be congenital rather than acquired.
Classification of ASA

- **1R** protrudes to the right atrium throughout the cardiorespiratory cycle
- **2L** protrudes to the left atrium throughout the cardiorespiratory cycle
- **3RL** protrudes to right atrium with a lesser excursion towards the left atrium throughout the cardiorespiratory cycle
- **4LR** protrudes left atrium with a lesser excursion towards the right atrium throughout the cardiorespiratory cycle
- **5** The aneurysm excursion is bidirectional and equidistant to the right and the left atrium throughout the cardiorespiratory cycle
Atrial Septal Aneurysm

- Cryptogenic stroke is among the most concerning manifestations of ASA.
- Patients with ASA and no ASD are unique because they lack an intracardiac shunt.
- Almost all patients with ASA have at least one additional source/cause for the patient’s cryptogenic emboli.
Atrial Septal Aneurysm

- An ASD with a diameter greater than 4mm correlates with an increased risk of multiple strokes in different time periods and TIA.
- Leads to the question: How should these defects be managed?
Conclusion

- Treatment is not well established.
- Medical management is currently preferred over surgical intervention. Specifically, antiplatelet and anticoagulation treatments are most frequently used.
- Anticoagulation is only indicated in those who simultaneously are found to have a DVT or hypercoagulable state. If anticoagulation is contraindicated an inferior vena cava filter should be considered
- In cases where antiplatelet therapy or anticoagulation therapy fails to prevent recurrence of stroke/TIA surgical correction is a plausible option.
How was this patient managed?
Questions
Thank you!

- Presenters
 - Gustavo Cardenas, MD
 - Habibollah Ghanavati, MD
 - Jonathan Wiener, MD
 - Touqir Zahra, MD
 - Jonathan P. Nieves, MD PGY-2
 - Jose Rodriguez, MD PGY-1
 - Jordan Smith MS-3
References

- RESPECT Trial