MEDICAL MANAGEMENT OF KIDNEY STONES

Marc Richards MD South Florida Kidney Disease and Hypertension Specialists BRRH Grand Rounds October 13th, 2015

Conflicts of Interest

None

Objectives

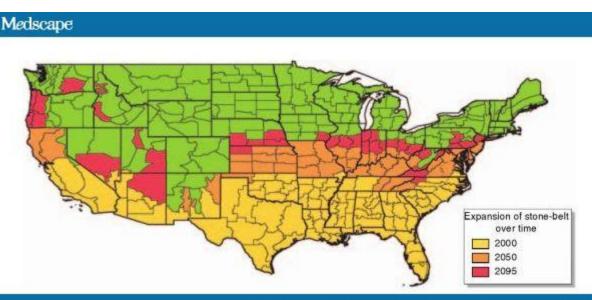
- Epidemiology
- Acute Renal Colic
- Types of Stones
- Risk factors for Stone Formation
- Treatment for Stone Prevention
- Show obligatory cute picture of kids

Annals 11/2014

- "Dietary and Pharmacologic Management to Prevent Recurrent Nephrolithiasis in Adults: A Clinical Practice Guideline from the ACP"
- Rec #1: "...increased fluid intake throughout the day to achieve at least 2L of urine per day..."
- Rec #2: "...pharmacologic monotherapy with a thiazide diuretic, citrate, or allopurinol to prevent recurrent nephrolithiasis in patients with active disease in which increased fluid intake fails to reduce the formation of stones..."

Rebuke

- Dr. David Goldfarb
 - Nephrologist NYU
 - Kidney stone expert


- American Urological Association guidelines
- "...I would not distribute the paper to a resident or fellow if instruction in the care of patients were the goal."

Epidemiology

- > 2 million outpatient visits/ year in US (2000)
- \$2-5 billion in annual expenditures
- Stone formation by age 70:
 - 16% of men
 - 8% of women
- Prevalence increasing in US
 3.8% (1970s) -> 7.4% (2000s)

Demographic Risk Factors

- ▶ M > F
 - Ratio decreasing
- Caucasians
- Stone Belt"
- Obesity

Source: Kidney Int © 2011 International Society of Nephrology

Case

- 35M overweight presented to the ED with 36 hours of nausea, vomiting, gross hematuria, and L flank pain
- Exam: appears uncomfortable, +L CVA tenderness
- Labs: Electrolytes normal, UA >180 RBC

• Next step: Imaging, but which type?

Imaging

CT (non-contrast) OR Renal US

Imaging

CT

• PROS:

- More specific for stone detection (~100%)
- Alternate diagnoses
- Better to assess ureteral dilation
- Stone composition identification?

• CONS:

Radiation

US US

• PROS:

- No radiation
- Can assess ureteral dilation
- Can identify stones missed by KUB
- CONS:
 - Can miss small or ureteral stones
 - Can miss alternate diagnoses

Imaging comparison

- RCT- 2759 ED patients presenting with likely stone sx to:
 - 1. US (read by ED physician)
 - 2. US (read by radiologist)

• 3. CT

• CT:

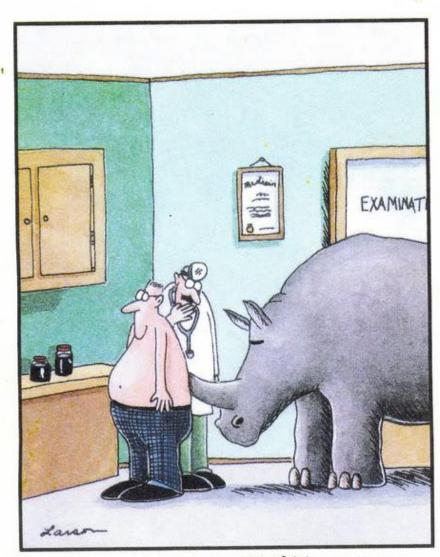
- More radiation (2x)
- More sensitive (88%)

US:

- More time in ED (rad)
- Less sensitive (54–57%)
- 41% of pts -> CT anyways
- No difference in "missed" diagnoses

KUB

- Better for follow-up
- Misses uric acid stones
- Misses small stones
- Misses obstruction


IVP

- Identifies obstruction
- Contrast load
- Useful in medullary sponge kidney

Renal Colic

- Pain
 - Paroxysmal 20-60 minute "waves"
 - May radiate or migrate
- Hematuria (70%)
 Gross or microscopic
- N/V
- Dysuria + urgency
 Distal ureter/UVJ
- DDX is broad...

"Wait a minute here, Mr. ADAMS ... Maybe it isn't kidney stones after all."

Medical Expulsive Therapy (MET)

- Hydration
- Analgesia
- Meds to facilitate stone passage

Urologist immediately if...

- Sepsis
- Stone > 10mm
- AKI and/or anuria

Hydration

• 43 pts with renal colic

- Arm 1– 1L NS/hr x 2 hours (n=20)
- Arm 2- 20mL NS/hr (n=23)

No difference:

- Stone size
- Pain + med requirements
- Stone passage rates

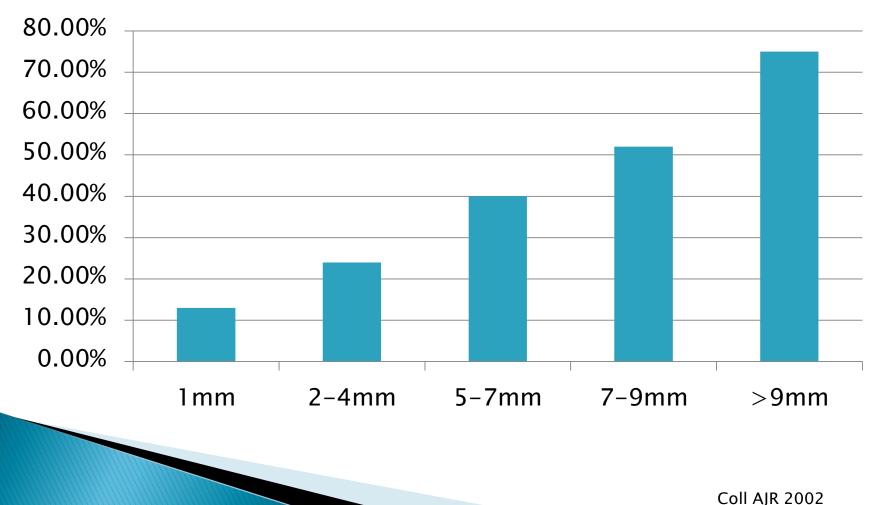
Analgesia

NSAIDS

- Decrease ureteral tone
- Better choice for malingering
- Less nausea/vomiting
- Not ideal if AKI, volume depleted

OPIATES

- Better pain relief than NSAIDs after 10 min
- No difference after 20-30 min


COMBINATION

• Better than either agent alone after 40 min

Cordel, WH. Ann Emer Med 1994 / Safdar et al. Ann Emer Med 2006

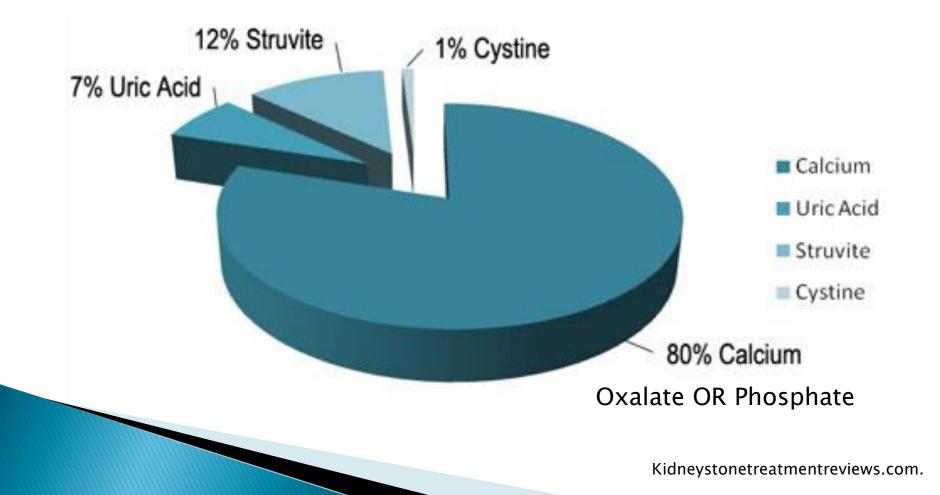
Will my stone pass?

% needing interventions

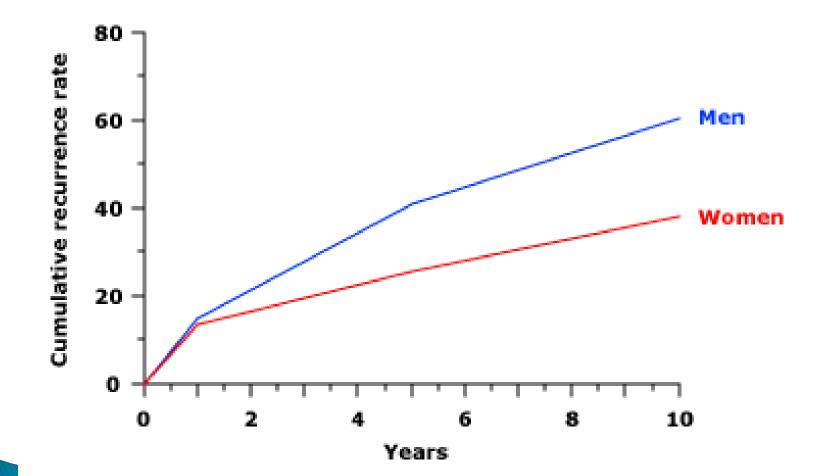
MET

- Alpha Blockers
 - Tamsulosin (Flomax), Doxazosin
 - Decrease intraureteral pressure

Calcium Channel Blockers


- Nifedipine
- Relaxes ureteral smooth muscle
- Multiple meta-analyses:
 - More likely to pass stones (65%; NNT = 4!!!)
 - Quicker expulsion
 - Less pain
 - Less hospitalizations

Case


- Pt hydrated and given Toradol for pain relief and sent home with Rx for Flomax 0.4mg/d.
- Passes stone into strainer 4 days later
- Now what?

Stone Analysis/Composition

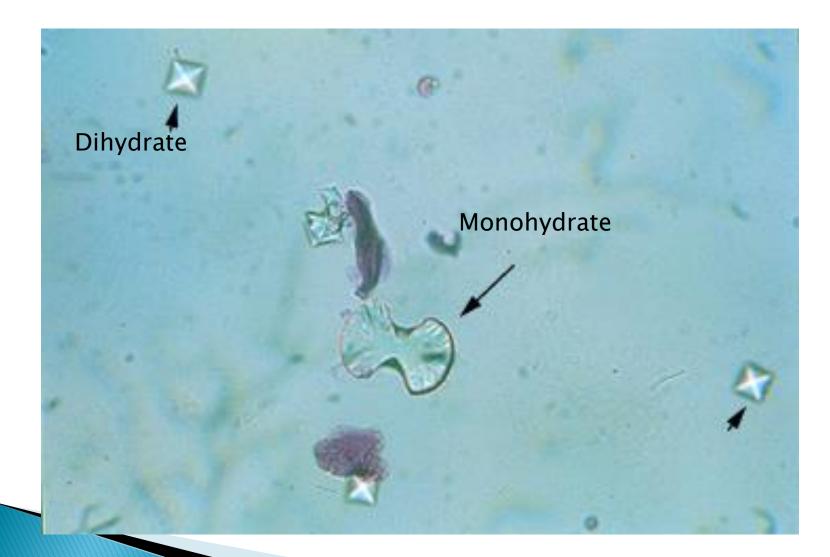
Percentage of Kidney Stone Types

Risk of stone recurrence

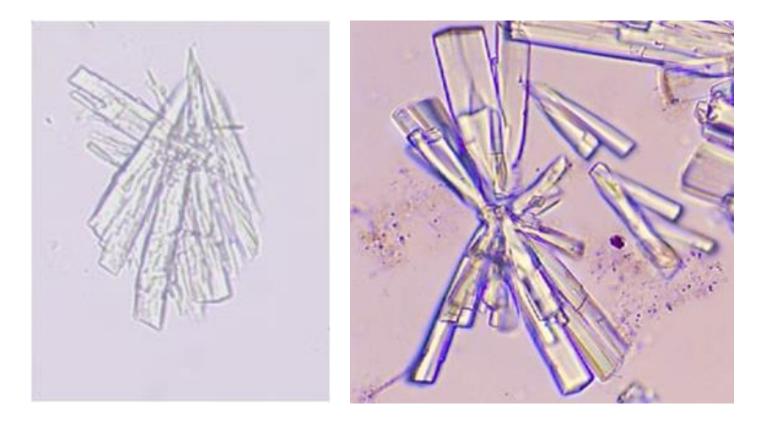
Uribarri. Annals Int Med. 1989.

Further workup

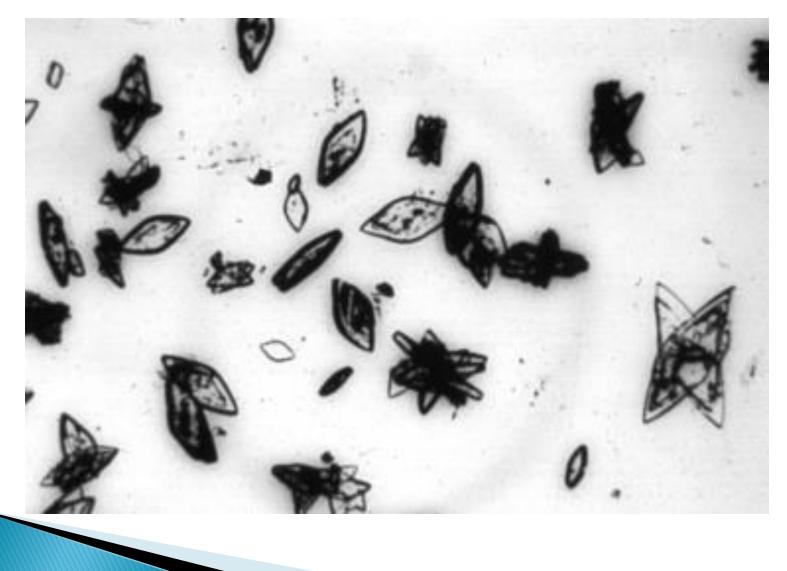
- After first stone:
 - Everyone gets H&P, review of imaging
 - Limited evaluation
 - Chem
 - Complete evaluation (Parks, Coe. KI. 1994)
 - Chem, UA, 24hr urine
 - Multiple stones, recurrent, peds
 - "Targeted evaluation"
 - Same as complete if high risk of recurrence


History

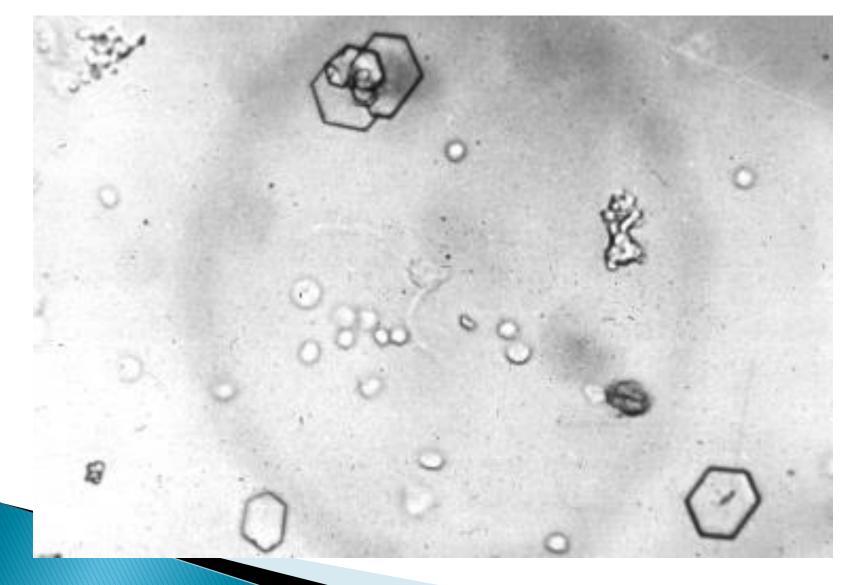
- Medical History
 - OP, Bowel dz, Gout, UTI, Granulomatous dz
- Family History
 - Increased RR 2.5x with +FH
- Medications, including vitamins and supplements
 Topamax, Sulfa, HAART, Vit C, Abx
- Diet
 - Salt, Oxalate, Calcium, Protein


Labs

- Calcium + Phos
 PTH?
- Bicarbonate
- Uric Acid
- Urinalysis
 - pH
 - Sediment \rightarrow crystals


Calcium Oxalate

Calcium Phosphate


Uric Acid

Struvite (Triple Phosphate)

Cystine

24 Hour Urine Collection

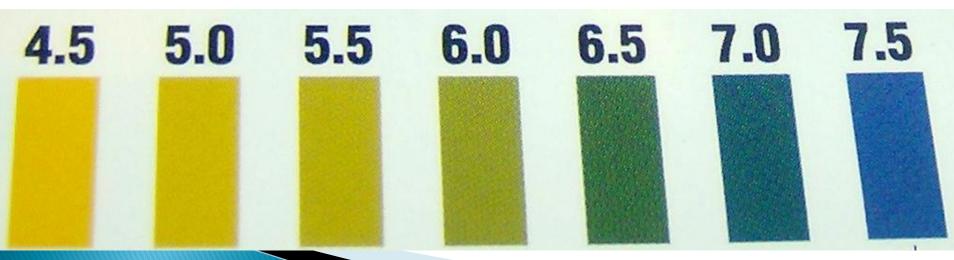
	"Normal" (male)	"Normal" (female)	
Volume	>2L	>2L	
pН	5-8	5-8	
Sodium	<150 meq	<150 meq	
Citrate	>320 mg	>320mg	
Calcium	<300 mg	<250 mg	< <u> </u>
Uric Acid	<800 mg	<750 mg	
Oxalate	<45 mg	<45 mg	
Creatinine	20-25 mg/kg	15-20 mg/kg	

24 Hour Urine Collection

"Normal" values? Or actually a spectrum?

	NHS I				NHS II				HPFS					
Variable	Cases	Control	RR	95% CI		Cases	Control	RR	95% CI		Cases	Control	RR	95% CI
Calcium <i>mg/day</i>														
<150	83	41	1.00	-		39	13	1.00	-		68	36	1.00	-
150-199	53	19	1.45	0.73-2.89		36	8	2.05	0.67-6.25		58	23	1.23	0.63-2.37
200-249	62	12	3.06	1.38-6.79		30	4	4.68	1.19-18.41		65	26	1.31	0.67-2.56
250-299	34	12	1.47	0.63-3.45		28	2	12.66	1.76-91.24		50	9	2.56	1.09-6.02
300-349	29	7	2.21	0.81-6.05	300+	36	3	14.62	2.66-80.26		35	5	3.77	1.26-11.26
350+	36	8	2.58	0.93-7.20							48	11	2.44	0.96-6.18
P, trend				0.03					0.008					0.006

Urine Volume


- Goal: > 2L/day
 - Proven in prospective trials
- Increased urine flow rate
- Decreased urine solute concentration
- Type of fluid: Generally everything okay
 Avoid: soda, ?grapefruit juice
 Okay!: coffee, tea, modest EtOH

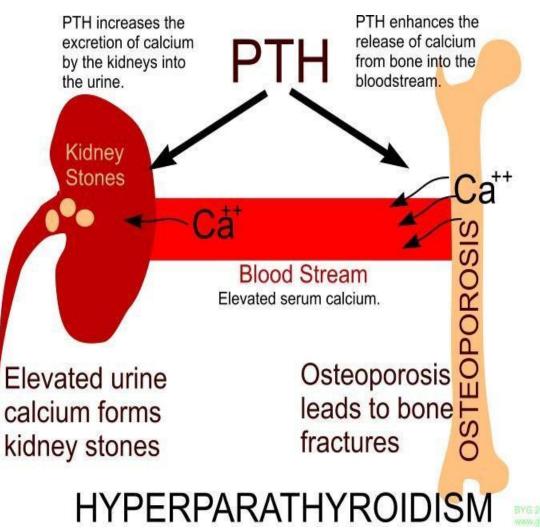
Urine pH

Acidic urine: uric acid stones

Alkaline urine: calcium phosphate stones
 Struvite stones

Calcium Oxalate stones form at variable pH

Hypercalciuria


- "Abnormal" > 250-300mg/day
- 50% of stone formers
- Three classes:
 - Absorptive: GI
 - Resorptive: Bone
 - Renal

Idiopathic Hypercalciuria

- Most common type
- Normal serum calcium, phos, vitD, PTH
- Inherited?
- Proposed Mechanism: renal phos wasting → increased synthesis of 1,25 OH Vitamin D → increased calcium absorption/resorption → hypercalciuria

Hyperparathyroidism

- 15–20% form stones
- Usually CaOx
- Tx: PTx
- RR stones normalized 10 yrs postop

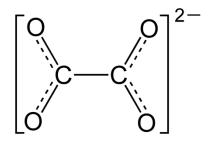
RTA

Type 1 – Distal

Impaired urinary acidification (elevated urine pH)

Acidosis → low urine citrate

- Decreased filtration
- Increased reabsorption


Hypercalciuria

- Caused by RTA (inherited)
- The cause of RTA (inherited -> nephrocalcinosis)

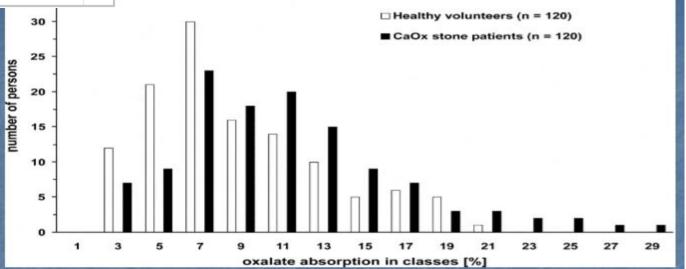
Hypocitraturia

- Citrate = "stone blocker"
- Binds calcium in tubular lumen → soluble complex
- Inhibits crystal agglomeration
- Causes: RTA, diarrhea, high protein diet, carbonic anhydrase inhibitors

Hyperoxaluria

- Higher risk of calcium oxalate stones as urinary oxalate rises > 25
- Exogenous found naturally in plants
- Endogenous primary hyperoxaluria
- Enteric short gut

Hyperoxaluria

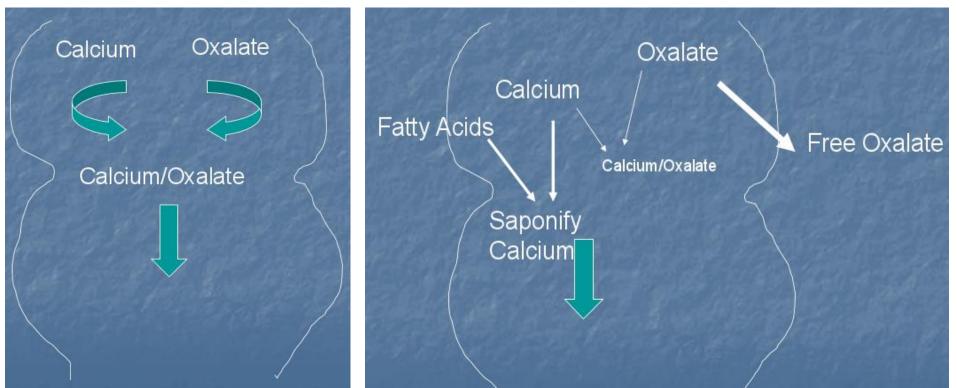

NHS1	Oxalate, mg			
	<20	100	63	1.00 (Ref.)
	20-24	171	105	1.15 (0.75-1.77)
	25-29	224	99	1.59 (1.03-2.46)
	30-39	278	93	2.51 (1.59-3.96)
	40+	125	43	2.36 (1.35-4.13)
	P, trend			<0.001
	Ovalata ma			·
NHS2	Oxalate, mg			
INTI32	<20	116	75	1.00 (Ref.)
	20-24	167	70	1.78 (1.14-2.80)
	25-29	158	64	1.81 (1.13-2.90)
	30-39	173	65	2.09 (1.27-3.43)
	40+	89	22	3.58 (1.85-6.94)
	P, trend			<0.001
	Oxalate, mg			
HPFS	<25	36	51	1.00 (Ref.)
	25-29	72	45	2.35 (1.28-4.32)
	30-39	203	146	1.90 (1.12-3.22)
	40-49	178	92	2.67 (1.52-4.70)
	50+	147	80	3.22 (1.72-6.05)
	P, trend			0.005
		1	1	

Exogenous hyperoxaluria

Diet:

HPFS	NHS I		NHS II		
Food	%	Food	%	Food	%
Cooked spinach	23.1	Cooked spinach	25.8	Cooked spinach	22.0
Raw spinach	17.3	Raw spinach	18.4	Raw spinach	20.3
Potatoes (whole)	10.2	Potatoes (whole)	11.1	Potatoes (whole)	9.9
Cold cereal	4.4	Cold cereal	4.3	Cold cereal	3.8
Oranges	2.9	Oranges	2.5	French fries	2.5
French fries	1.9	Coffee	1.7	Oranges	2.0
Mixed nuts ^b	1.7	Cooked carrots	1.7	Pasta	2.0
Navy beans (canned)	1.7	Tea	1.6	Pasta sauce ^d	1.9
Cookies ^c	1.6	Cookies ^c	1.5	English muffins	1.7
Peanuts 1.6		Pasta sauce ^d	1.4	Coffee	1.7

- Normal < 5% absorption
- CaOx stone formers absorb 20% more dietary oxalate (Voss J.Uro. 2006)


Endogenous Hyperoxaluria

- ▶ PH 1/II
- Rare inherited condition
- Urinary Oxalate > 100-200mg/day
- Deficiency of enzyme in liver
- Widespread CaOx deposition
- Tx: liver transplant

Enteric Hyperoxaluria

Normal

Fat malabsorption

Gastric Bypass, Diarrhea, Small bowel disease, Pancreatic exocrine insufficiency *increased colonic permeability*

Courtesy: Dr Denu-Ciocca, UNC-KC

Gastric Bypass

- Jejueunal-Ileal bypass
 Abandoned in late 1970s
- Roux-en-Y Gastric Bypass (RNY) Bypassed Duodenum Jejunum Jejunum

Roux-en-Y

Higher oxalate excretion (83mg) vs controls (30s mg)

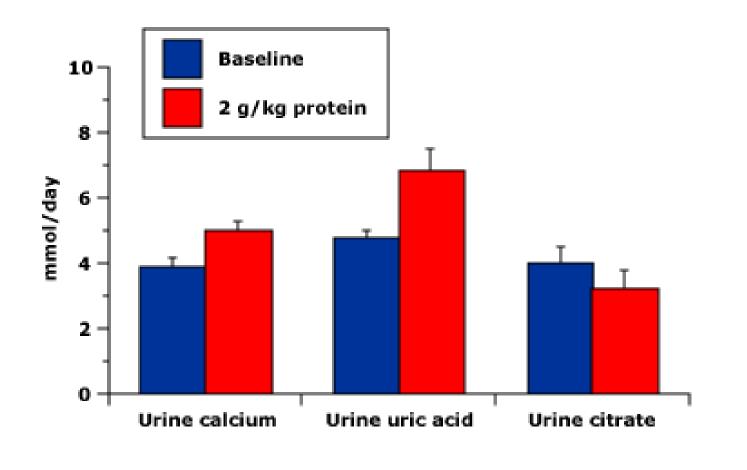
• Gastric Banding/Sleeve

Lower oxalate excretion (35mg vs 61mg/day RYGB)

Gastric Bypass (Roux-en-Y)

The Contraction	Preop Median (Q1, Q3)	Postop Median (Q1, Q3)	Change	P value
Calcium (mg/d)	176 (128,232)	135 (70, 171)	63	< 0.0001
Oxalate (mg/d)	32 (25, 41)	40 (31,50)	8	0.01
Uric Acid (mg/d)	583 (411, 779)	412 (308, 477)	271	< 0.0001
Citrate (mg/day)	675 (367, 1,071)	456 (302, 824)	- 183	0.0006
Total volume (I/d)	1.8 (1.08)	1.44 (0.86, 1.80)	- 0.46	0.002
Sodium (mEq/d)	188 (150, 295)	143 (100, 175)	73	<0.0001
CaOx (SS)	1.27 (0.79, 1.92)	2.33 (1.34, 3.58)	0.76	<0.001
Uric acid (SS)	1.52 (0.68, 2.77)	2.14 (1.03, 4.04)	0.32	0.2
pН	6.03 (5.59, 6.27)	5.75 (5.4, 6.18)	- 0.10	0.18

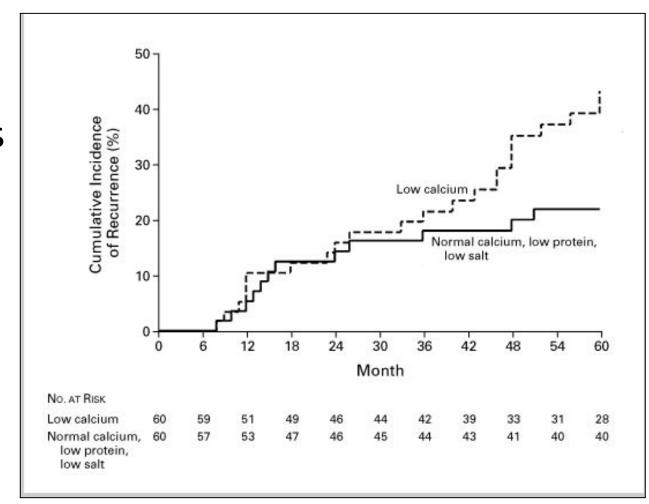
Hyperuricosuria


- Originly felt to be a cause of CaOx stones
- Allopurinol reduced risk of stone formation in pts with high urine uric acid and normal urine calcium (NEJM 1986)
- Recent studies refute this claim: (Curhan KI 2008)

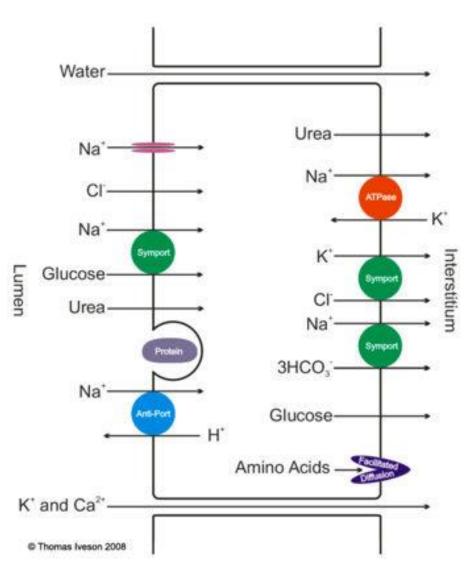
NHS1	I	I	1	NHS2	1	1		HPFS	1	T	1
Uric acid, mg			Uric acid, mg				Uric acid, mg				
<400	353	161	1.00 (Ref.)	<400	159	75	1.00 (Ref.)	<400	116	46	1.00 (Ref.)
400-499	248	116	0.96 (0.69-1.33)	400-499	190	76	1.01 (0.66-1.55)	400-499	79	67	0.48 (0.29-0.80
500-599	159	59	1.07 (0.70-1.64)	500-599	151	61	0.91 (0.56-1.47)	500-599	115	79	0.49 (0.30-0.80)
600-699	69	40	0.64 (0.37-1.09)	600-699	105	42	0.69 (0.38-1.23)	600-699	112	76	0.41 (0.24-0.68)
700-799	39	16	0.85 (0.40-1.82)	700-799	47	23	0.51 (0.24-1.06)	700-799	82	48	0.38 (0.21-0.68)
800+	30	11	0.72 (0.29-1.80)	800+	51	19	0.44 (0.19-1.02)	800+	132	98	0.22 (0.12-0.40)
P, trend			0.30	P, trend			0.06	P, trend			<0.001

Management- Diet

- Oral hydration to increase urine volume to over 2L/day
- Low animal protein
- Low salt diet (<150meq/d)</p>
- Normal (or high) calcium diet
 Paradoxic
- Low oxalate diet
- DASH


Diet- Animal Protein

Klok. J Clin Endo Metab. 1989.


Diet- Calcium

- 120 men
- Recurrent
 CaOx stones
- High urine Ca
- In tx group, urine oxalate down

Diet- Sodium

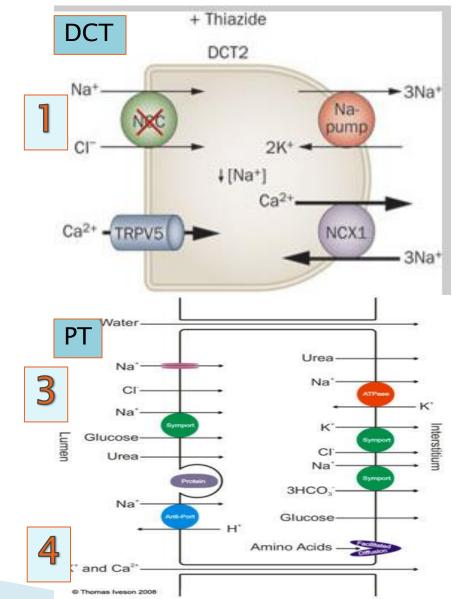
- Proximal tubule transport
- Inreasing sodium intake from 80 >200meq/d increased urine calcium excretion by 40%

Muldowney, KI 1982.

Diet- Oxalate

Not much benefit in most populations

	Parameter		Quintile						
		1	2	3	4	5			
HPFS									
	quintile median (mg/d)	106	149	191	236	328			
	cases	363	317	325	313	309			
	person-years	105,806	106,298	107,393	108,200	107,788			
	age-adjusted RR (95% CI)	1.0	0.89 (0.76 to 1.03)	0.89 (0.77 to 1.04)	0.85 (0.73 to 0.99)	0.85 (0.73 to 0.99)	0.04		
	multivariate RR (95% CI) ^b	1.0	1.01 (0.86 to 1.17)	1.07 (0.92 to 1.25)	1.10 (0.94 to 1.29)	1.22 (1.03 to 1.45)	0.01		
NHS I									
	quintile median (mg/d)	87	127	164	205	287			
	cases	312	279	304	250	269			
	person-years	254,953	257,271	259,528	259,712	258,882			
	age-adjusted RR (95% CI)	1.0	0.89 (0.76 to 1.05)	0.96 (0.82 to 1.12)	0.79 (0.67 to 0.93)	0.85 (0.72 to 1.00)	0.03		
	multivariate RR (95% CI) ^b	1.0	1.02 (0.86 to 1.20)	1.16 (0.99 to 1.36)	1.03 (0.87 to 1.23)	1.21 (1.01 to 1.44)	0.05		
NHS II									
	quintile median (mg/d)	85	117	157	202	293			
	cases	365	340	296	286	277			
	person-years	169,306	168,806	169,837	169,964	169,674			
	age-adjusted RR (95% CI)	1.0	0.95 (0.82 to 1.10)	0.83 (0.71 to 0.96)	0.80 (0.69 to 0.94)	0.79 (0.67 to 0.92)	0.001		
	multivariate RR (95% CI) ^b	1.0	1.03 (0.88 to 1.20)	0.96 (0.82 to 1.13)	1.00 (0.85 to 1.18)	1.06 (0.89 to 1.27)	0.57		

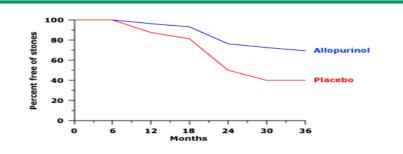

Taylor. JASN. 2007

Treatment- Medications

- Indicated if dietary changes not sufficient to prevent worsening stone buden
- Hypercalciuria Thiazide diuretics
- Hyperuricosuria Allopurinol(?)
- Hypocitraturia Alkali Citrate
- Low urine pH- Alkali Citrate

Hypercalciuria – Thiazides

- 1) Inhibition of NCC in DCT
- > 2) Volume Depletion
- 3) Increased Na reabsorption in Proximal Tubule
- 4) Increased passive Ca reabsorption


Hypercalciuria – Thiazides

- Chlorthalidone, Indapamide, HCTZ
 - Often require doses greater than used for HTN
- Prevents formation of new stones
 - Does not dissolve preexisting stones

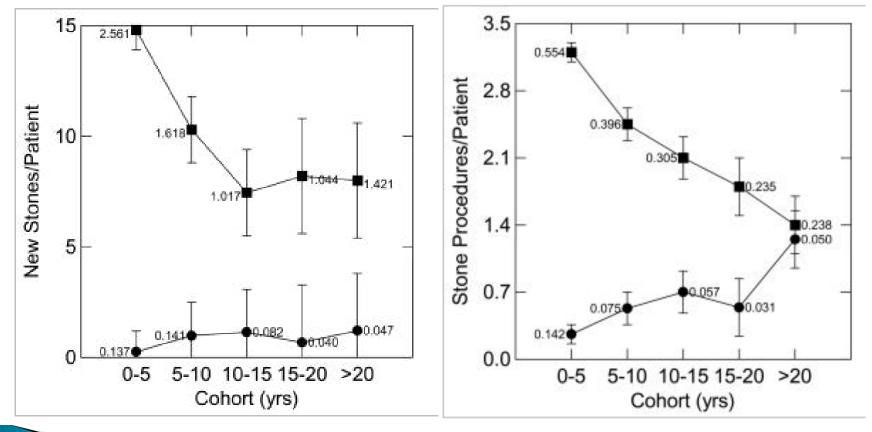
Author, Year	Treatment	Selection/Percent Hypercalciuria	Follow-Up (years)	n Treated/n Placebo	RR
Brocks, 1981 (17)	Bendroflumethiazide 2.5 mg TID	None	1.6	33/29	NS
Scholz, 1982 (18)	HCTZ 25 mg BID	None	1	25/26	NS
Laerum, 1984 (12)	HCTZ 25 mg BID	None/20%	3	25/25	0.39
Wilson, 1984 (16)	HCTZ 100 mg daily	None	2.8	23/21	0.48
Robertson, 1985 (15)	Bendroflumethazide 2.5 mg TID	None	3 to 5	13/9	0.38
Mortensen, 1986 (13)	Bendroflumethazide 2.5 mg + KCl	None	2	12/10	NS
Ettinger, 1988 (10)	Chlorthalidone 25/50 mg	None/13% to 15.8%	3	19/23/31 25 mg/50 mg/placebo	0.23
Ohkawa, 1992 (14)	Trichlormethiazide 4 mg	Hypercalciuria	2.1 to 2.2	82/93	0.42
Borghi, 1993 (9)	Indapamide 2.5 mg daily	Hypercalciuria	3	43/14	0.21
Fernandez-Rodriguez, 2006 (11)	HCTZ 50 mg daily	None/52%	3	50/50	0.56

Hyperuricosuria - Allopurinol (?)

- Many older trials suggest Allopurinol can reduce calcium stone formation
- Curhan 2008– protective effect of hyperuricosuria?
- No trials in uric acid stones
 - Rec: Tx if Hyperuricosuria AND still forming stones despite correcting urine pH and volume

Allopurinol prevents stones in hyperuricosuria

When compared to placebo, allopurinol protects against new stone formation in hyperuricosuric calcium oxalate stone formers.

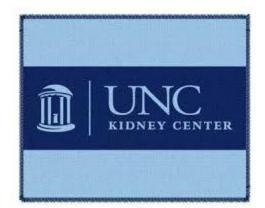

Data from Ettinger, B, Tang, A, Citron, JT, et al, N Engl J Med 1986; 315:1386.

Hypocitraturia- Alkali

- Potassium Citrate 20–60meq/d in divided doses
- Sodium Citrate/Bicarbonate
- Barcelo, J Uro, 1993. Significant remission: Kcitrate (72%) vs Placebo (20%)
- Fink, Annals, 2013. Recurrent stone risk, RR = 0.25 with citrate tx
- Setzer, J Uro, 1996. Lemonade significantly increased urine citrate levels ~200mg/day

Is medical therapy worth it?

UChicago stone clinic follow-up over time



Treatment Summary

- Calcium Oxalate:
 - Diet: High fluid, Low salt, Low animal protein, low oxalate
 - Meds: Citrate, Thiazide, Allopurinol?
- Calcium Phosphate
 - Diet: High fluid, Low salt, Low animal protein
 - Meds: Citrate (watch pH!), Thiazide, Allopurinol?
- Uric Acid
 - Diet: High fluid, Low salt, Low animal protein
 - Meds: Citrate, Allopurinol?
- Struvite
 - Not much
- Cystine
 - Diet: High fluid, Low animal protein
 - Meds: Citrate, Thiols (increase water solubility)

Acknowledgements

- South Florida Kidney Disease and Hypertension
 - Dr Ira Lazar
 - Dr John Panos
 - Dr Eric Lazar
 - Kathy Custer NP
 - Reginee Bromson NP
- UNC Kidney Center
 Multidisciplinary Stone Clinic

Thank you!

