Monoclonal Gammopathies and Associated Disorders

Warren Brenner M.D Center for Hematology Oncology Lynn Cancer Institute

No Financial Disclosures

Objectives

- Understand what tests to order in workup of monoclonal gammopathies
- How to interpret common laboratory studies in monoclonal gammopathies
- Disorders associated with Monoclonal proteins

Laboratory Testing in Monoclonal Gammopathies

The Five Immunoglobulin (Ig) Classes						
	lgM pentamer	IgG monomer	Secretory IgA dimer	lgE monomer	lgD monomer	
			Secretory component			
Heavy chains	μ	γ	α	ε	δ	
Number of antigen binding sites	10	2	4	2	2	
Molecular weight (Daltons)	900,000	150,000	385,000	200,000	180,000	
Percentage of total antibody in serum	6%	80%	13%	0.002%	1%	
Crosses placenta	no	yes	no	no	no	
Fixes complement	yes	yes	no	no	no	
Fc binds to		phagocytes		mast cells and basophils		
Function	Main antibody of primary responses, best at fixing complement; the monomer form of IgM serves as the B cell receptor	Main blood antibody of secondary responses, neutralizes toxins, opsonization	Secreted into mucus, tears, saliva, colostrum	Antibody of allergy and antiparasitic activity	B cell receptor	

- M protein Monoclonal Ig secreted by an abnormal expanded clone of plasma cells
- M protein may be intact, or light chain or rarely heavy chain restricted
- Presence of an M protein indicates an underlying clonal plasma cell or lymphoproliferative disorder
- Clonal process may be malignant or produce a small limited premalignant clone
- Limited clone may be asymptomatic or cause disease related to potential adverse properties of the M protein

Interpretation of Tests in **Monoclonal Gammopathies**

SPEP •

- Inexpensive screening test • using agarose gel electropheresis
- If M protein found can be quantified using a densitometer tracing of gel

Monoclonal pattern on serum protein electrophoresis (SPEP)

- Liver disease 61 percent
- Connective tissue disease 22 percent
- Chronic infection 6 percent
- Hematologic disorders 5 percent
- Non-hematologic malignancy 3 percent
- Other 3 percent

Polyclonal gammopathy

Serum Immunofixation

- Essential to differentiate monoclonal from polyclonal proteins
- Will detect an M protein at a concentration of at least 0.02 g/dl and a urine M protein at a concentration of >0.004 g/dl

Monoclonal gammopathy on immunofixation

Serum Free Light Chains

Intact Immunoglobulin

Monoclonal Gammopathies

Serum FLC

- More sensitive for detection of monoclonal light chains than urine IF
- Monitoring of patients with non secretory or oligosecretory MM ullet
- Dx and monitoring of light chain MM and AL amyloid ullet
- Prediction of risk of progression of MGUS, Smoldering Myeloma, • solitary plasmacytoma of bone
- Diagnosis, monitoring during and after treatment and prognosis of ulletMM
- Potentially obviates need for urine protein studies in initial ulletevaluation of monoclonal gammopathies
- Serum FLC increase as GFR declines
- Kappa/lamda ration >3.0 unlikely due to renal insufficiency ullet

- Novel antibodies which identify the different light chain types of each Immunoglobulin class; IgGk, IgGL, IgAk and IgGL
- Allows accurate quantification of involved/uninvolved immunoglobulin of patients affected isotope
- Ratio of monoclonal and polyclonal Ig of the same isotype can be calculated
- HLC ratios can be used in screening, monitoring and risk stratifying of patients with monoclonal gammopathies

Serum Heavy lite

- **UPEP** analogous to SPEP •
- Monoclonality confirmed by ulleturine IF
- 24 hour urine to determine total amount of protein excreted in urine per day
- Quantity of M protein determined by measuring size of M spike(%) and X by total 24 hr urine protein excretion and usually reported as g/24 hour

Urine Studies

Urinary monoclonal protein

N Protein Disorders

- MGUS
- Multiple Myeloma
- Light chain amyloidosis
- Waldenstroms macroglobulinemia
- Others

MGUS

- normal.
- spike of 2.1 g per deciliter at the gamma region;
- significance is made, how should the patient be followed?

• A 58-year-old man with no significant medical history is found to have an elevated total protein concentration (8.1 g per deciliter) on a routine blood chemical study. • He is asymptomatic, and his physical examination is

 Serum protein electrophoresis reveals a monoclonal immunofixation shows a monoclonal IgG kappa protein. • What further evaluation is warranted, and assuming the diagnosis of monoclonal gammopathy of undetermined

MGUS

- Presence of a monoclonal protein and no features of MM or other malignant disorder
- Most common plasma cell disorder
- Prevalence increases with age
- $\cdot 3.2\%$ in persons > age 50
- •5.3% in persons > age 70
- Higher in men than women and higher in blacks than whites

Table 2. Recommended Testing in Patients with Suspected MGUS.

History and physical examination Hemoglobin concentration Serum calcium and creatinine concentrations Protein studies

- Total serum protein concentration and serum electrophoresis (serum monoclonal protein concentration)
- 24-hour urine protein excretion and urine electrophoresis (urine monoclonal protein concentration)
- Serum and urine immunofixation (type of monoclonal protein)
- Determination of serum free light-chain ratio (kappa and lambda free light chains)*
- Examination of bone marrow aspirate†
- Skeletal survey†
- * This determination is not yet standard procedure but is useful in assessing prognosis. † This is not recommended if the serum monoclonal protein concentration is below 1.5 g per deciliter.

Disease **Associated with MGUS**

- Hip /vertebral fractures, osteoporosis
- Hypercalcemia
- Superficial Thrombophlebitis
- Mycobacterium Infection

Disease associations with MGUS: A Population based study of 17,398 patients, Mayo Clin Proc.2009;84(8):685-693

Prognosis of MGUS

- In patients with MGUS, the actuarial risk of myeloma at 25 years of follow-up is 30% and the actual risk (when competing causes of death are taken into account) is 11%.
- A high monoclonal protein concentration, a high percentage of plasma cells in the bone marrow, an IgA monoclonal protein, and an abnormal free light-chain ratio are predictors of an increased risk of progression to multiple myeloma or other malignant plasma-cell disorder.

Smoldering Myeloma

- Defined by M Spike >3g/dl and/ or monoclonal plasma cells in bone marrow >10%
- No evidence of end organ damage(CRAB)
- Higher risk of progression to MM
- 10% per year for first 5 years, 3% per year for next 5 and 1% per year for next 10
- Standard of care generally observation although one phase III study published showing lenalidomide/dexamethasone improved OS vs observation in patients with high risk smoldering MM

Multiple Myeloma—Statistics

Estimated US incidence of myeloma in 2014: >24,000 new cases per year¹

> From 2007 to 2011, the number of new diagnoses was 7.7 men and 4.9 women per 100,000 people¹

5-year survival: 44.9%1

Identification of MM

- Presence of M protein in serum or urine^{1*}
- Identification of >10% monoclonal plasma cells in bone marrow¹
- Evidence of end-organ damage: CRAB¹

CRAB: Symptomatic MM¹⁻³

Calcium Elevation	Serum calcium ≥11.5 mg		
Renal Failure	Serum creatinine ≥2 mg		
Anemia	Hemoglobin <10 g/dL or		
Bone	Lytic lesions, pathologi		

 Additionally, immune dysfunction can lead to recurrent infections in patients with MM and impaired numbers and function of B, NK, and T cells⁴

"In patients with no detectable M component, an abnormal serum FLC ratio on the serum FLC assay can substitute and satisfy this criterion.2

compression fractures

1. Kyle RA, et al. Leukemia. 2009;23(1):3-9. 2. Durie BG, et al. Leukemia. 2006;20(9):1467-1473. 3. Kyle RA. Hematologia. 2010;11(1):30-39. 4. Pratt G, et al. Br J Hematol. 2007;138(5):563-579...

ig/dL

g/dL

r >2 gm/dL below the lower limit of normal

fractures, or osteopenia with

@ 2013 Celgene Corporation

MM Disease Course

1. Kyle RA, et al. N Engl J Med. 2002;346(8):564-569. 2. McGuire TR. Multiple myeloma. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach. 7th ed. New York, NY: McGraw-Hill; 2008:2295-2307. 3. Kuehl MW, et al. Nat Rev Cancer. 2002;2(3):175-187.

@ 2013 Celgene Corporation

- 2011-4173. © the American Society of Hematology.
- of Hematology.
- 1. Kyle RA, et al. Mayo Clin Proc. 2003;78(1):21-33. 2. Bladé J, Rosinol R. Hematol Oncol Clin North Am. 2007;21(6):1231-1246.
- Ropper AH, Gorson KC. N Engl J Med. 1998;338(22):1601-1607.

^b This image was originally published in ASH Image Bank. Stanely Schrier. Multiple myeloma-2. ASH Image Bank. 2011-1815. © the American Society

Clinical Presentation of MM

Clinical Presentation of MM^{2,3}

Increased BM PCs (≥10%) M Protein Anemia MM Symptoms Lytic Bone Lesions Bone Pain Fatigue Weight Loss **Renal Insufficiency** Hypercalcemia Paresthesias *Some patients may be diagnosed due to incidental abnormalities from comprehensive labs and imaging studies.4 BM, bone marrow; PC, plasma cell.

 McGuire TR. Multiple myeloma. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach. 7th ed. New York, NY: McGraw-Hill; 2008:2295-2307. 2. Kyle RA, et al. Leukemia. 2009;23(1):3-9. 3. Nau KC. Am Fam Physician. 2008;78(7):853-859. 4. Landgren OL, et al. JAMA;304(21):2397-2404.

44

Pathogenesis of Bone Disease

Bone Complications in MM

- Bone disease present at diagnosis in over two thirds of patients¹
 - ~80% of patients with MM will have bone involvement at some point²
- Can result in³
 - Pathologic fractures
- Bone pain
- Osteopenia
- Spinal cord compression
- Hypercalcemia
- Common sites^{2,3}
- Vertebrae
- Sternum
- Ribs
- Skull

147 1. Tricot G. Clinical manifestations. In: Hoffman R, et al. Hematology: Basic Principles and Practice. 5th ed; 2008. http:// www.mdconsult.com. Accessed November 6, 2012. 2. Kyle RA, et al. Leukemia. 2003;78(1):21-33. 3. Bladé J, et al. Hematol Oncol Clin North Am. 2006;21(6):1231-1246.

Rena cisease

Causes of Renal Impairment in MM

- Most common cause is myeloma kidney¹
 - Casts composed of monoclonal light chains that precipitate in the renal tubules
- Other causes that may coexist²
 - Fanconi syndrome (very rare)
 - Systemic amyloidosis
 - Light chain deposition disease (LCDD)
 - Hypercalcemia1
 - Hypercalciuria →osmotic diuresis→volume depletion→prerenal kidney failure
 - Calcium deposits → interstitial nephritis
 - Bisphosphonate induced renal toxicity³

Factors Contributing to Renal Impairment

- Dehydration^{1,2}
- Advanced age^{1,2}
- Reduced GFR Nephrotoxic drugs
- and contrast agents^{1,2}
- Comorbidities
- Diabetes mellitus³
- Hypertension²

Reversibility of Renal Failure in MM

- Reversible in ~20%-60% of patients
- Approximately 50% of patients with serum creatinine <4 mg/dL will recover a normal renal function

Predictors of Reversibility¹

- Serum creatinine <4 mg/dL
- Serum calcium >11.5 mg/dL
- Urine protein excretion <1 g/24 h

^{1.} Tricot G. Clinical manifestations. In: Hoffman R, et al. Hematology: Basic Principles and Practice. 5th ed; 2008. http:// www.mdconsult.com. Accessed November 6, 2012. 2. Dimopoulos MA, et al. Leukemia. 2008;22(8):1485-1493. 3. Edwards BJ, et al. 168 J Clin Oncol. 29:2011 (suppl; abstr e16576).

Prognosis and Treatment

- ISS staging system, host factors, LDH, cytogenetics most important in determining prognosis
- Multiple new drugs approved over • last 10 years
- IMIDS thalidomide, lenalidomide, • pomalidomide
- Proteosome inhibitors bortezomib, • carfilzomib, ixazomib
- Novel antibodies targeting cell surface proteins - CS1 and CD 38
- Chemotherapy \bullet
- Steroids

Waldenstroms Macroglobulinemia

- clonal immunoglobulin(IgM) secreting lymphopIsamacytic cells
- in 30-35%

B cell neoplasm manifested by accumulation of

MYD 88 >90% of patients and CXCR4 mutations

Disease Manifestations

- Organ dysfunction ullet
- Amyloid đ
- Hyperviscosity ullet
- Cryoglubulinemia ullet
- Cold agglutinins ullet
- Peripheral neuropathy ullet
- First new drug approved for V was ibrutinib - A BTK inhibitor 2015

Retinopathy in Waldenstrom's macroglobulinemia

Light Chain Associated Amyloidosis

- 53 yr old white female with past medical Hx of HTN, GERD and depression presented with a 6 week history of fatigue and progressive weight loss (210-176) pounds over 4 months.
- Found to have elevated alkaline phosphatase of 1600 on routine labs and was referred for further evaluation.
- Relevant physical findings Normal vitals except tachycardia at 100 bpm.
- 10cm liver edge felt below RCM
- Labs WCC 9.7 HGB 14.2 Plat -568 Creatinine 0.9 Alb 3.9 Alk P – 1408 ALT 36 AST 78 Bilirubin – 1.2 TP – 8.1 gammaGT 1317 Coags normal

UA: prot>300mg/dl 24 hour urine protein: 4485 mg/24hr SPEP – No monoclonal protein ■IF serum – negative IF urine $-\lambda$ light chain ■BM biopsy – 5% plasma cells. Areas of marrow replaced by eosinophilic dense material stained by congo red. Liver biopsy – extensive

eosinophilic dense material throughout portal tracts and lobular sinusoids.

AMYLOIDOSIS OF THE LIVER

Pathogenesis

- An uncommon disorder in which proteins change conformation, aggregate and form fibrils that infiltrate organs
- Light chain amyloid derived \bullet from monoclonal B cell disorders producing amyloidgenic immunoglobulin light chains . Linear non branching aggregated fibrils with a diameter of 8-10nm and β pleated sheet conformation by xray diffraction.

Kidney (46%)

Heart (30%)

Liver (9%)

Gastrointestinal tract (7%)

Soft tissues (3%)

Peripheral nervous system (5%)

- May present with rapid and progressive onset of CHF.
- Characteristically, features are predominantly of right sided CHF.
- ECG low voltage and may have a pattern of MI in absence of CAD.
- ECHO concentrically thickened ventricles with normal-small cavity and diastolic dysfunction on doppler.
- Clinical clue is marked worsening of failure when CCB used.

Cardiac

Rena

- Nephrotic syndrome present in 30-50% at diagnosis.
- λ BJP have been associated with inferior survival as compared with κBJP or no monoclonal protein, irrespective of serum creatinine.

Congo red stain in amyloidosis

Gastrointestinal

- Hepatomegaly may be striking at presentation and usually disproportionate to extent of liver enzyme abnormalities (except alkaline phosphatase which is frequently elevated).
- Presence of jaundice is an adverse prognostic factor and MST from onset of jaundice is only 3 months.
 Patients may present with severe intrahepatic
- Patients may present with cholestasis.
- Massive splenic deposition may result in functional hyposplenism.
- Amyloid can be found within any part of the GI tact and may infiltrate parenchyma, organs and nerves.

Motor neuropathy rare.

Neuro ogic

- Peripheral neuropathy may be presenting manifestation or develop subsequently durin
- Neuropathy usually distal, symmetric and progressive. Cranial nerve and autonomic nerve

AL arthropathy – may simulate RA. Most striking appearance is the 'shoulder pad sign' secondary to swelling of the shoulder joints.

Macroglossia – occurs in 10-20 %

Vascular infiltration may result in easy bruising especially in the eyelids and flexural regions. Purpuric lesions typically occur above the nipple.

Factor X deficiency (acquired) can occur in up to 10% of pt's and over 2/3 of pt's with acquired factor X deficiency have systemic Amyloidosis.

- Serious disease with high mortality. series.
- predominantly involved.

Cardiac involvement is major determinant of prognosis and most common cause of death – MST from onset of CHF is 7 months.

Overall median survival after diagnosis is < 2years in most</p>

Patients with co-existent MM have a poorer prognosis. Survival time largely dependent upon the organ system

Disorders with small conal expansion

- Light chain associated amyloid
- LCDD
- POEMS syndrome
- Acquired falconi syndrome ullet
- Cryoglobulinemia ullet
- Schnitzler syndrome
- Neuropathies ullet
- Cold agglutinin disease ullet
- Xanthomatosis

Monoclonal Gammopathy of Renal Significance

- rate
- MGRS diagnosed by monoclonal deposits in kidney
- Restriction to a single class of light chain and/or heavy chain
- Monclonal protein studies should be performed to match monoclonal protein in circulation with monoclonal deposits in kidney
- Monoclonal protein studies should be performed in all \bullet patients with MGRS associated renal disorders

 Renal conditions attibuted to a clonal plasma cell disorder that is more "MGUS-like" in terms of bulk and proliferative

- have lymphoma most commonly CLL
- Type I and II cryoglobulinemic GN
- Randall type (MIDD)
- Proliferative GN with Ig deposits
- Treatment of MGRS related disorders directed to related clonal disorder

 Immunotactoid glomerulopathy - glomerular deposits of microtubules arranged in parallel arrays - microtubules associated with IgG most commonly - 50% of patients

Monoclonal immunoglobulin deposition disease of the

Thank you **?Questions**