Boca Raton Regional Hospital Grand Rounds September 13, 2016

PERIPHERAL VASCULAR DISEASE: CONCEPTS IN EVALUATION AND TREATMENT

W. Anthony Lee, MD, FACS Chief, BocaCare Vascular Surgery Christine E. Lynn Heart and Vascular Institute Boca Raton, Florida

Disclosures

No disclosures relevant to this presentation

Q1.

- 79 yo M, R calf cramping at 100 feet, relieved with rest and palpable R pedal pulse. The patient
- 1. does not have vasculogenic claudication
- 2. may have vasculogenic claudication
- 3. definitely has vasculogenic claudication

Q2.

- 79 yo M, h/o CAD, HTN with 6m h/o constant calf pain and numbress relieved with walking. ABI 0.6/0.7. Next step should be
- 1. immediate referral to vascular surgeon
- 2. immediate angiogram and intervention
- 3. initiate w/u for non-vasculogenic etiologies of leg pain

Q3.

- 79 yo M, with 1 block thigh/calf claudication. The NEXT diagnostic test should be
- 1. ABI w/ exercise
- 2. arterial duplex ultrasound only
- 3. angiogram

Q4.

- 79 yo M, severe COPD/DOE, home O2/steroids, ambulates 5 steps w walker, c/o calf-ankle swelling/redness/pain. Arterial/venous leg dopplers show no DVT, SFA occlusion and ABI 0.6/0.7. Treatment options may include all of the following EXCEPT:
- 1. compression stockings for lymphedema and/or venous insufficiency
- 2. antibiotics for cellulitis
- 3. angioplasty and/or stent for SFA occlusion

Scope of Peripheral Vascular Disease

Peripheral Vascular Disease

- Aortic Aneurysms
- Carotid Stenosis
- Lower Extremity Occlusive Disease
- Venous Thrombosis

Brief Anatomic Review

Peripheral Vascular Disease

 Progressive process of stenosis and acute-onchronic occlusion (typically from atherosclerosis) in the major and mediumsized arteries

Lesion Types

- Focal vs. diffuse
- Stenosis
- Output Chronic total occlusion (CTO)
- Soft plaque
- Calcific disease
- Intimal hyperplasia
- Acute thrombosis
- Embolic

Demographics

- Prevalence
 - 8-10 million people in US
 - 12 20% of adults over the age of 65
 - 75% (50% asymptomatic + 25% atypical leg pain) require NO treatment
 - Don't look for it!!!

Spectrum of Clinical PVD

- Claudication: ~20-25%
- Critical limb ischemia: ~1-2%
 - Untreated CLI: ~25% amputation, ~25% CVrelated death @ 6months

Risk Factors

- Age >70 years
- CAD/Stroke
- Smoking
- Diabetes
- Hyperlipidemia
- Hypertension
- Antiplatelet tx
- Sedentary lifestyle

MODIFIABLE

Classifications for LE Ischemia

Table 1 Fontaine Classification System for Peripheral Artery Disease				
Stage	History			
1	Asymptomatic			
lla	Mild claudication			
llb	Moderate-severe claudication			
III	Ischemic rest pain			
IV	Tissue loss or ulceration			

*Source: Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 2000;31(1 pt 2):S39.

Table 2				
Rutherford's Classification of Peripheral Arterial Disease*				

Grade	Category	History
0	0	Asymptomatic
1	1	Mild claudication
1	2	Moderate claudication
1	3	Severe claudication
	4	Ischemic rest pain
=	5	Tissue ulceration (minor)
=	6	Tissue loss/gangrene

*Source: Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg 2000;31(1 pt 2):S39.

Critical Limb Ischemia (CLI)

- Rest pain (Fontaine III, Rutherford Grade II-Category 4)
- Tissue loss (Fontaine IV, Rutherford Grade III-Categories 5, 6)

Trans-Atlantic Inter-Societal Consensus cati assi

ENDOVASCULAR

SURGERY

Single stenosis ≤10 cm in length
Single occlusion ≤5 cm in length

Type B lesions:

- Multiple lesions (stenoses or occlusions), each ≤5 cm
- Single stenosis or occlusion ≤15 cm not involving the
- infrageniculate popliteal artery

 Single or multiple lesions in the absence of continuous
- tibial vessels to improve inflow for a distal bypass • Heavily calcified occlusion ≤5 cm in length
- Single popliteal stenosis

- Multiple stenoses or occlusions totaling >15 cm with or without heavy calcification
- Recurrent stenoses or occlusions that need treatment after two endovascular interventions

Type D lesions

- Chronic total occlusions of CFA or SFA (>20 cm, involving the popliteal artery)
- Chronic total occlusion of popliteal artery and proximal trifurcation vessels

Examples

Infrainguinal PAD

	Normal	Claudication	Rest Pain	Tissue Loss
Rutherford	0	1-3	4	5-6
Fontaine	I.	Ш	111	IV
ABI	1.1-0.9	0.8-0.5	0.4-0.0	
TASC	N/A	A-B	C-D	

Diagnosis: Symptoms

- Reproducible pain ("crampy") and/or fatigue with walking, relieved with rest (intermittent claudication)
- Numbness, pain, paresthesia localized to the toes (esp. 1st toe) and/or the instep at night, relieved with dependent positioning (metatarsalgia/rest pain)

Diagnosis: Signs

- None
- Mild muscle wasting
- Hair loss
- Shiny skin
- Dependent rubor

- Coolness
- Pallor
- Tissue loss
- Sensory change
- Motor change

Diagnostic Studies: Physiologic

Vascular Lab

- ICAVL accreditation ("Good Housekeeping" seal)—ACCEPT NO SUBSTITUTES
- Validation
- "garbage in, garbage out"

- The most important diagnostic tool (2nd to a careful H&P)
- May be the ONLY preoperative diagnostic study required

Diagnostic Studies: Physiologic

- Single most important study
 - ABI (resting)—ankle-brachial index
 - Segmental pressures
- False negative (decreased arterial compressibility)
 - Diabetes
 - CKD/HD
 - Calcinosis

ABI

 The higher of the 2 ratios obtained by dividing the calf pressure required to occlude either DP or PT doppler signal by the higher of 2 brachial pressures

When ABI's Fail

- PVR (pulse volume recording)—waveform analysis
- TBI (toe brachial indices)
- Exercise ABI
 - Increased sensitivity for hemodynamically significant lesion

Diagnostic Studies: Anatomic

- Do NOT order if you are going consult vascular surgery
- Optimal study dependent on clinical presentation
- Non-Invasive
 - Arterial duplex ultrasound
 - CT angiography (CTA)
 - MR angiography (MRA)
- Angiography

Non-Invasive Imaging

- Optimal approach to lesion (L vs. R, brachial vs. femoral, etc.)
- Technical risk assessment (single vs. multi-vessel runoff)
- Endovascular vs. surgical candidacy
- Limitations
 - Complex/multisegmental lesions→low flow
 - Duplex: Quality dependent on flow characteristics (eg. proximal lesions underestimate severity of distal lesions)
 - CT & MR: Quality dependent on contrast delivery and bolus timing
 - Pseudo-stenosis/occlusion

Contrast Angiography

- The "Gold Standard"
- Allows simultaneous diagnosis and catheter-based intervention
- Limitations
 - Contrast nephropathy (1-8%)
 - Anaphylaxis (0.1-0.2%)
 - Puncture site related complications (4-7%)

Comparing Severity Levels Example of Migraine Headache

Adapted from Understanding Health Outcomes Educational Series (1998).

Treatment

- Medical
- Surgery
- Endovascular (angioplasty/stenting)
- Goals
 - Improve quality of life
 - Relieve pain
 - Heal ischemic ulcers/wounds
 - Prevent limb loss

Medical Management

- Risk factor modification
- Orug
 - ASA
 - Statin
 - Pletal (cilostazol)
- Exercise
 - Min: 30 min x 5x/week
- Weight loss

Surgery

- Sypass/Endarterectomy
- Salvage" therapy for
 - Failed endovascular treatment
 - Unfavorable lesion types
 - Unfavorable lesion locations
- Pros: Durable, Low-Cost
- Cons
 - Maximally-invasive
 - Conduit-limited

Endovascular

- Evidence-based/ "textbook" vs.
 "real-world"
- First line (invasive) treatment
- Pros: Minimally-invasive
 - Outpatient, low morbidity, rapid recovery
- Cons: Durability, Cost

LYNN HEART & VASCULAR

INSTITUTE

BOCA RATON

 Favorable lesions: short, stenotic, non-calcified, large vessel, good outflow, non-diabetic, non-CKD

Tools & Techniques

- Intraluminal PTA +/- stent
- Subintimal PTA
- Cutting balloon PTA
- Cryoplasty
- Laser
- Oirectional atherectomy
- DES (drug-eluting stent)
- Absorbable stent

Stents

Absorbable

Balloon-expandable NiTi stent

Covered Stents

Chronic Total Occlusions (CTO)

- 70-80% overall success
- Recanalization tools and techniques
 - Intraluminal
 - Subintimal
- Re-entry

CONSISTING A CHRISTINE E. LYNN HEART & VASCULAR INSTITUTE

Aspiration/Thrombus Management

- Thrombo- vs. atheroemboli
- Recognized complication in all interventional procedures
- Mechanical
 - Aspiration
 - Fragmentation
- Pharmaco-lysis

Medtronic Export

Challenges to SFA Intervention

- Diffuse disease more common (vs. focal)
- Occlusions more common (vs. stenoses)
- Adductor canal (repetitive flexion motion)
- Small diameter, low flow, high resistance
- Frequent outflow disease

LYNN HEART & VASCULAR

INSTITUTE

66F, DM, ESRF, HTN, L great toe ulcer and rest pain

82 yo M w/ HTN, R LE short distance claudication

