Achieving Equilibrium in ESRD Patients

-Marc Richards MD

0

- -South Florida Kidney Disease and HTN Specialists
- -Chief of Medicine, BRRH
- -BRRH Grand Rounds: April 18th, 2017

Outline

- Dialysis prescription
- Adequacy
- Estimated Dry Weight (EDW)
- Electrolytes / Acid-Base
- Anemia
- Bone Mineral Disease (BMD)

Dialysis Adequacy

- Effective removal of uremic solutes
 - <u>Small, water soluble</u>
 - Urea "BUN"
 - Small, protein bound
 - Indoles
 - Phenols
 - <u>Middle molecules</u>
 - B2 microglobulin
- Note: "adequate dialysis" =/= "doing well on dialysis"

BUN

- Advantages
 - Easily measurable- index of nitrogenous waste products from protein consumption
- Disadvantages
 - Studies suggest difficult to measure uremic solutes may be more important
 - BUN can be different than expected due to different clinical states

$Urea \ { m Reduction} \ { m Ratio} \ ({ m URR})$ $URR = rac{U_{pre} - U_{post}}{U_{pre}} imes 100\%$

- Simple
- Goal: 65% or more
- Doesn't take into account urea generation or UF

<u>Kt/V</u> = Fractional Urea Clearance

- K = dialyzer clearance of urea (mL/min)
- t = time of dialysis tx (min)
- V = volume of distribution (mL) = TBW
- WARNING: gory math details ahead!
- HD pt- mass 70 kg (154 lb), HD t=4 hours, dialyzer urea clearance 215 ml/min.
- Kt/V = [215 x 240] / [70000 x 0.6] = 1.23

Correlation b/t URR and Kt/V

Limitations

- Can be artificially elevated by an elevated "Kt" or a diminished "V"
- Assumes urea removal is similar to other uremic toxins/ middle molecules
- BUN "rebound"

So if decent Kt/V is good, is a lot more even better?

- HEMO TRIAL (NEJM 2002)
- Kt/V

How to manage inadequate Kt/V

- *More time
- Bigger dialyzer (higher flux)
- Increase BFR
 - AVF/AVG instead of CVC
 - Larger gauge needles
- Ensure no recirculation
- Preserve RRF

- Patients weighed at beginning (B) and end
 (E) of each treatment
- $B \rightarrow E$: UF (Liters) = Weight lost (kg)

Parameter we set, usually aiming for EDW

E→B: Interdialytic weight gain (IDWG)
 Driven by patient salt > fluid intake

High IDWG is bad \rightarrow High UFR

Major dialysis orgs advise max rate I3mL/h/kg

Overaggressive clearance can be harmful, too.

Water movement during standard hemodialysis

Consequences of over/underaggressive ultrafiltration

Too much UF (* <edw)< th=""><th>Too little UF (>EDW)</th></edw)<>	Too little UF (>EDW)
Syncope	Volume Overload
Presyncope	Hypertension
Chest Pain	Edema
Cramping	CHF
Hypotension	LVH
General organ hypoperfusion	

*Patients can be simultaneously volume overloaded and overaggressively ultrafiltrated!

Estimated Dry Weight (EDW)

- Rough definition: Normal seated BP at end of HD treatment without orthostatic hypotension or signs of volume overload
- Difficult to measure
- Relies on clinical judgment / "trial and error"
- Multiple alternative techniques being developed

CritLine

- Cuvette attached to dialyzer estimates hematocrit
- Hematocrit increases with removal of blood volume
- Slope of curve >5% suggests overaggressive UF

Other Methods

Plasma ANP

- More elevated in hypertensive pts predialysis
- Lower at end of HD if BP was dialysissensitive
- Absolute values not helpful to predict EDW

• IVC Diameter

 "standardized" measurements postdialysis often included many hypertensive or overloaded pts

Dialysis Clearance

- DIFFUSION
 - Higher \rightarrow lower concentrations
 - Bidirectional
- CONVECTION
 - Solvent drag
 - Effective for middle molecules

Dialysate Composition

Electrolyte	Concentration (meq/liter)
Sodium	134-140
Potassium	0-4
Bicarbonate	34-40
Calcium	2-3 (I meq/L = 4 mg/dL)

Dialysate Potassium

- Generally 2-3meq/L
- Emergently can use 0K bath
 - Need to check frequent blood gas Ks
 - Not available at BRRH

Dialysate Potassium

- Predialysis hyperkalemia
- Postdialysis hypokalemia
- →SCD?

Figure 2 Ratio of actual to expected number of occurrences of sudden death for each 12 h interval beginning with the start of HD.

Dialysate Bicarbonate

- Primary buffer
- 34-40meq/L
- Pts mildly acidotic at start of tx

Image taken from Nursing Consultants, Inc. http://www.nursinged.com/index.html

Dialysate Calcium

- 2-3 meq/L (usually 2.5meq/L)
- Low Ca baths associated with increased risk of hypotension
 - Decreased cardiac contractility
- High Ca baths can calcium load
 - Caution with binder, vitamin D use!
 - Increased [Ca x P]
 - May be needed following parathyroidectomy

Anemia in ESRD

- Kidneys produce 90% of circulating EPO
- EPO production declines as CKD advances
- Less EPO → apoptosis of erythroid cell progenitors
- Iron deficiency

Clinical Manifestations

- Fatigue
- Cognitive impairment
- Decreased libido
- Decreased exercise tolerance
- DOE
- Increased CV risk

Iron Deficiency

- Causes
 - Decreased GI absorption
 - Occult GIB
 - Phlebotomy
 - Dialysis effects
 - ESAs exhaust iron stores
- Indications to treat: Tsat < 20-30%, HgB variable

Erythropoetin Stimulating Agents (ESAs)

- Epogen/Procrit
- Darbopoetin/Aranesp
- SC or IV* administration
- Goal HgB ~ 10-11 g/dL
- Benefits
 - Improved M&M
 - Less transfusions
 - Improved QOL and exercise tolerance

Target HgB

- CHOIR Trial (NEJM 2006)
- ~I400 CKD (non HD) pts
- Goal HgB ||.3 vs |3.5

CHOIR Trial: Results

 Composite endpoint- death, myocardial infarction, hospitalization for congestive heart failure without renal replacement therapy, or stroke

What about HD patients?

- Normal Hematocrit Trial (NHT)- 1998
- All patients with heart disease (CHF,

ESA Adverse Effects

- When aiming for normal HgB
 - Increased mortality
 - CV events
 - Malignancy
 - Access thrombosis
 - NHT 39% vs 29% in normal HgB group
- When aiming for any HgB
 - Hypertension
 - Vasoconstriction EPO receptors in blood vessels

CKD-MBD

nkf

ABBREVIATIONS: PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D; 1,25(OH),D, 1,25-dihydroxyvitamin D

Mechanism...

Treatment

• Very difficult

- Medications will simultaneously improve and worsen various lab values
- Goals:
 - Ca 8.5-10.2
 - Ph 3.5-5.5
 - [Ca x P] < 55
 - PTH < 500-600
 - VitD > 30

Medication Options

	Calcium	Phosphorous	РТН
Phos Binders (calcium based)	↑	\downarrow	$\downarrow \leftrightarrow$
Phos Binders (non calcium based)	\leftrightarrow	\downarrow	$\downarrow \leftrightarrow$
Activated Vitamin D	1	↑	\downarrow
Cinacalcet	\downarrow	\downarrow	\downarrow

*In addition to low phos diet!

Summary

- ESRD patients suffer from a large number of hemodynamic, chemical, hematologic, and musculoskeletal abnormalities.
- Optimization of the dialysis prescription can help mitigate many of these issues

Thank You!

- Dr Ira Lazar, Dr John Panos, Dr Eric Lazar, and/or myself are always around to answer questions and be of assistance.
- Email: <u>marc.richards@gmail.com</u>
- Cute picture of kids:

