
Obstructive Sleep Apnea and Cardiovascular Disease

Klar Yaggi, MD MPH Director, Yale Centers for Sleep Medicine Associate Professor of Medicine Yale University School of Medicine

Incidence of and risk factors for nodding off at scientific sessions

Kenneth Rockwood, David B. Hogan, Christopher J. Patterson; for the Nodding at Presentations (NAP) Investigators

Journal of the Canadian Medical Association, 2006

Factor	Odds ratio (and 95% CI)
Environmental	
Dim lighting	1.6 (0.8-2.5)
Warm room temperature	1.4 (0.9–1.6)
Comfortable seating	1.0 (0.7–1.3)
Audiovisual	
Poor slides	1.8 (1.3-2.0)
Failure to speak into microphone	1.7 (1.3-2.1)
Circadian	
Early morning	1.3 (0.9–1.8)
Post prandial	1.7 (0.9-2.3)
Speaker-related	
Monotonous tone	6.8 (5.4-8.0)
Tweed jacket	2.1 (1.7-3.0)
Losing place in lecture	2.0 (1.5-2.6)

Table 1: Risk factors for nodding off at lectures

Note: CI = confidence interval.

Sleep Apnea and Cardiovascular Disease (CVD)

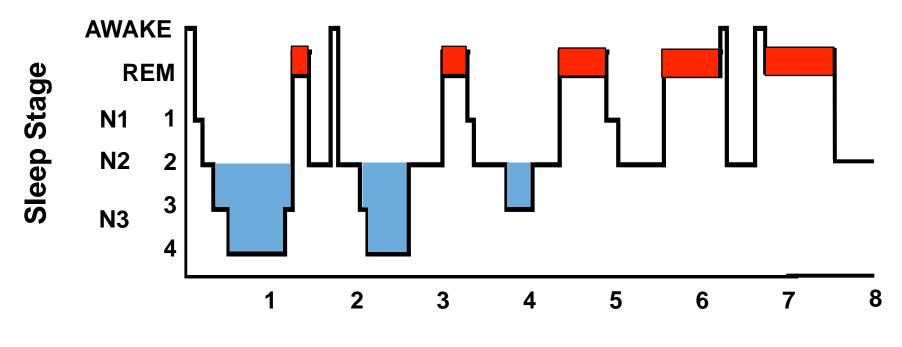
- Evidence linking sleep apnea to CVD
- <u>Mechanisms</u> of CVD in sleep apnea
- <u>Strategies</u> examining impact treating sleep apnea on CVD

Sleep Apnea and Cardiovascular Disease (CVD)

• Evidence linking sleep apnea to CVD

Standard Polysomnography

- EEG, EOG, EMG → Presence/stage of sleep
- EKG
- Airflow


- Cardiac rate/rhythm
 Apnea/hypopnea
- Chest/abd, bands Respiratory effort
- Pulse oximetry Arterial oxygen sat
- Left/right leg EMG → Leg movements (PLMs)

The Sleep Cycle

Alternating states of sleep that occur over an ~8hours

- NREM: Nonrapid Eye Movement; Stages N1N3 or 14; ~80% of night Deep Slow Wave Sleep (N3 or Stages 3&4)
 - **REM:** Rapid Eye Movement; Dreams occur; ~20% of night

REM Sleep

Hours of Sleep

Physiology of Normal Sleep

NREM Sleep (80%)

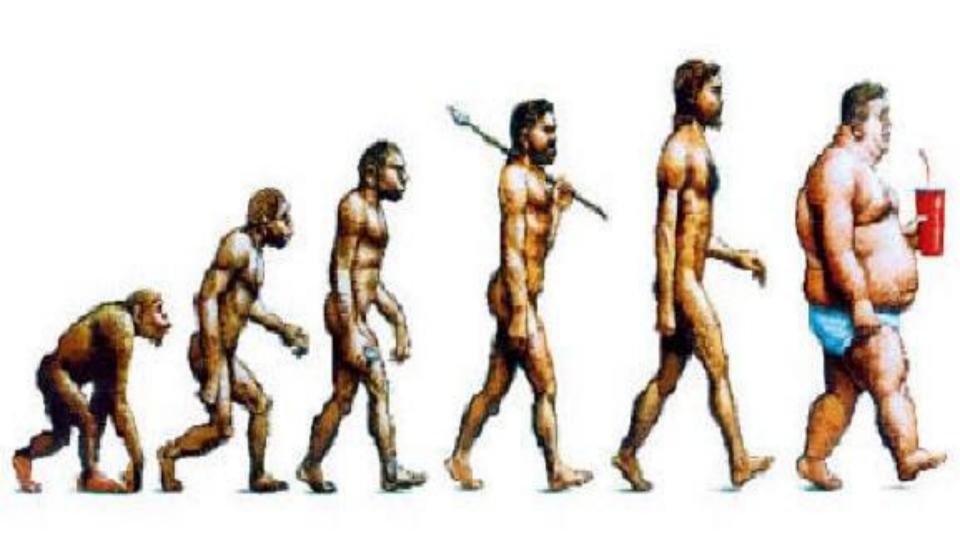
- J Sympathetic nerve activity, Sy
 HR, and BP ('nocturnal dipping') HR
- \downarrow Cerebral blood flow
- Regular breathing pattern
- ↓ Minute Ventilation
- \downarrow Muscle tone

- REM Sleep (20%)
- Sympathetic nerve activity,
- dipping') HR, and BP similar to awake
 - \uparrow Cerebral blood flow
 - Irregular breathing pattern
 - Breathing dependent on diaphragm
 - Absent muscle tone

Definitions and Severity Criteria

- <u>Apnea</u>: Cessation of airflow > 10 sec (valid measure of breathing)
- <u>Hypopnea</u>: Decrease in airflow by 30%, associated with a >4% oxygen desaturation (best inter/intrascorer reliability)
- <u>Severity Criteria:</u>
 - Mild: 5-15 events per hour
 - Moderate: >15-30 events per hour
 - Severe: >30 events per hour

Prevalence in Middle Aged Adults


	<u>% Men</u>	<u>% Women</u>
$AHI \ge 5$	24	9
AHI ≥ 5 + daytime somnolence	4	2

AHI = Apnea Hypopnea Index

Young; NEJM 1993

Risk Factors for Sleep Apnea

- Male gender
- Increasing age
- Post-menopausal state
- Hypothyroidism
- Alcohol/sedating medications
- Obstructive lesions of the upper airway
- Craniofacial abnormalities (e.g., retrognathia)
- Obesity

Pathogenesis of Obstructive Sleep Apnea

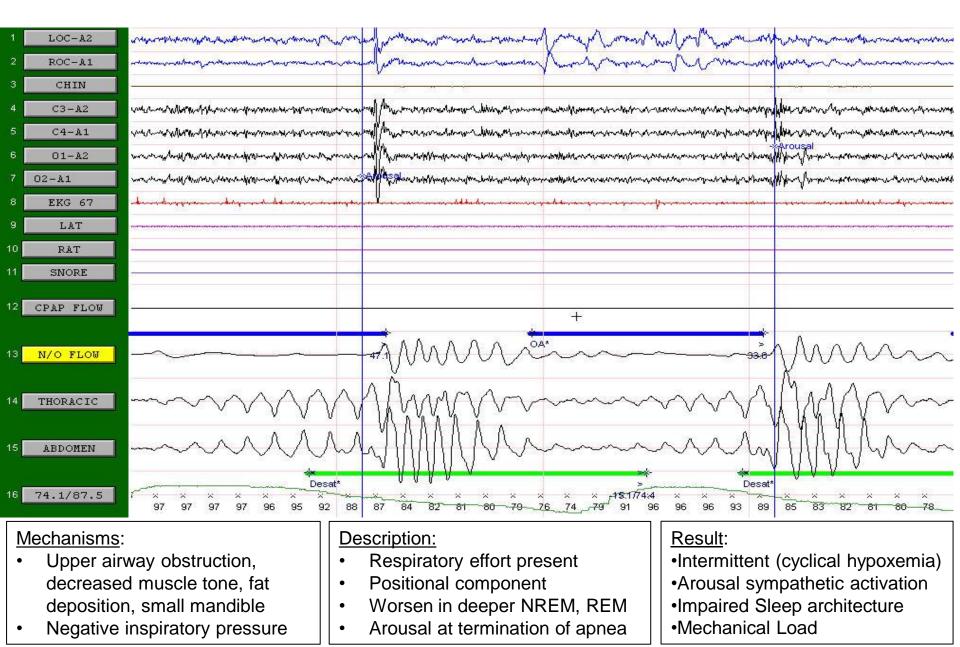
Promotion of airway collapse

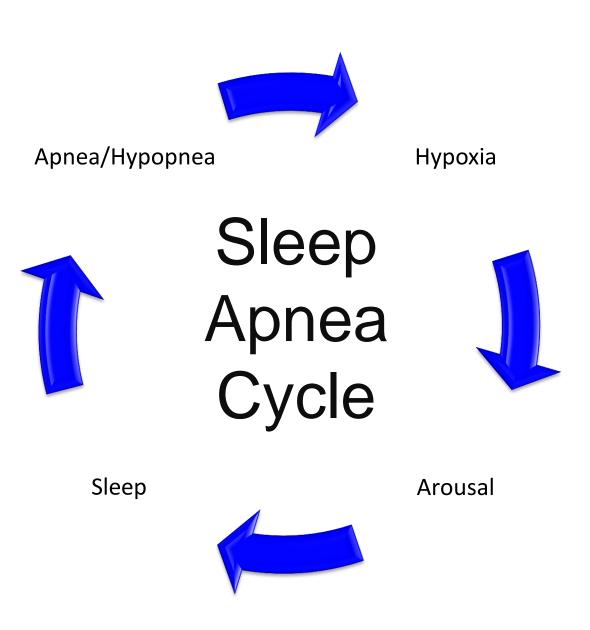
Negative pressure on inspiration

Extralumenal positive pressure Fat deposition Small mandible

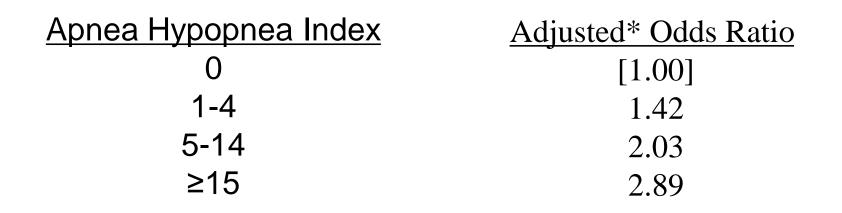
Promotion of airway patency

Pharyngeal dilator muscle contraction (genioglossus)


(longitudinal traction)


White, AJRCCM, 2005

Common Symptoms


- Loud snoring
- Excessive daytime sleepiness
- Morning headaches (cerebral vasodilation)
- Neuropsychiatric and cognitive symptoms
 - Depression/emotional instability
 - Short-term memory loss
 - Impaired concentration
- Breathing pauses (bed partner history is key)

Obstructive Sleep Apnea (OSA)

Sleep Apnea and Diurnal Hypertension

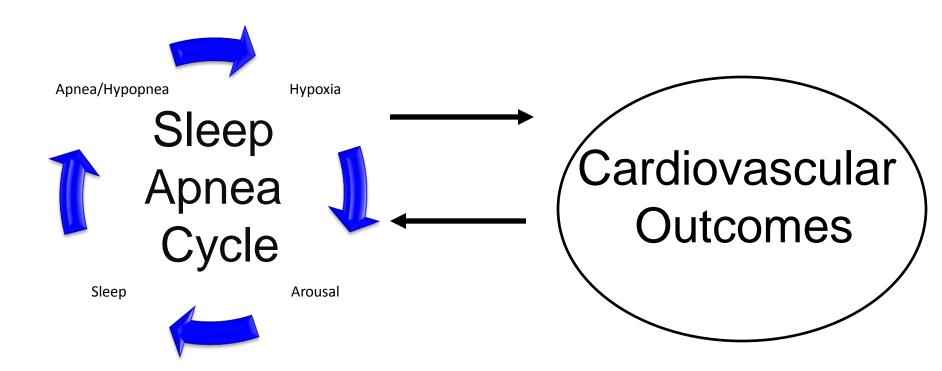
*adjusted for age, gender, BMI, waist circumference, alcohol, tobacco use, and baseline hypertension.

P for trend=0.002

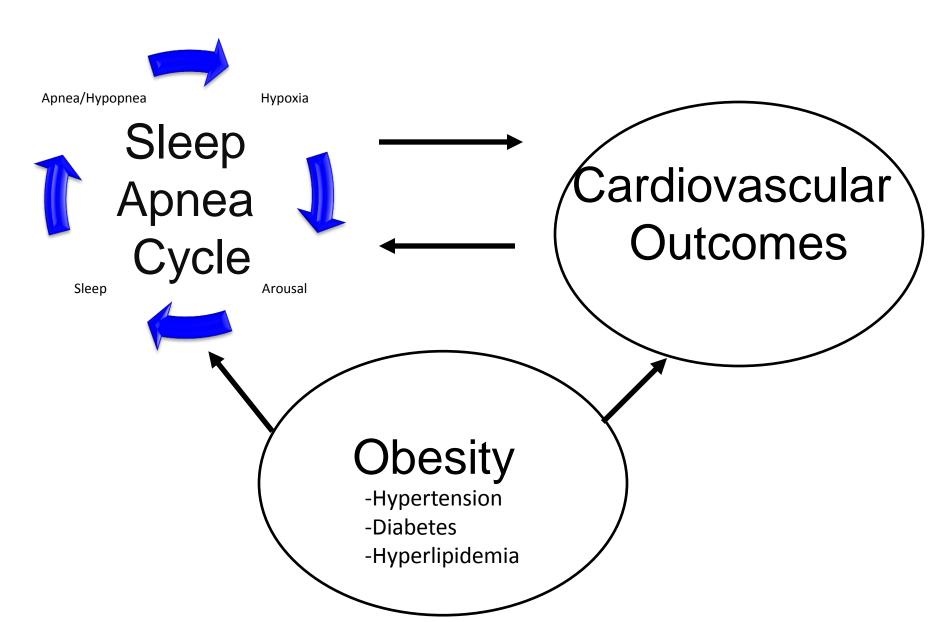
Peppard, NEJM, 2000

Sleep Heart Health Study Cross-Sectional Results

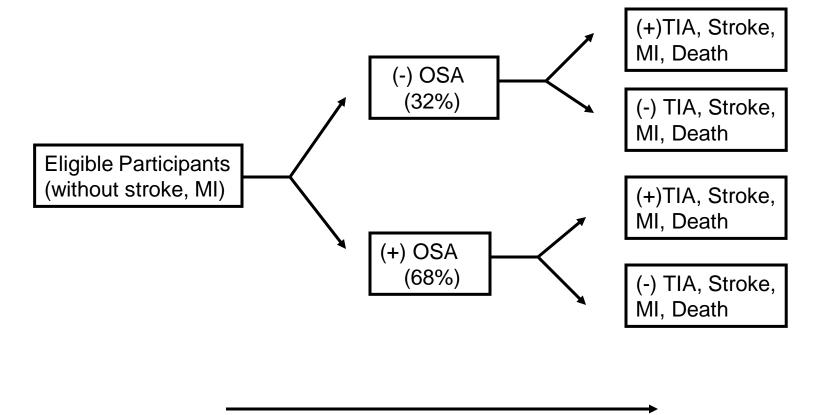
- Large community study
- N = 6,424
- Among OSA
 - † Prevalence stroke
 - † Cardiovascular disease


ADJUSTED* RELATIVE ODDS (95% CONFIDENCE INTERVAL) OF PREVALENT CORONARY HEART DISEASE, HEART FAILURE, OR STROKE, ACCORDING TO QUARTILE OF THE APNEA-HYPOPNEA INDEX

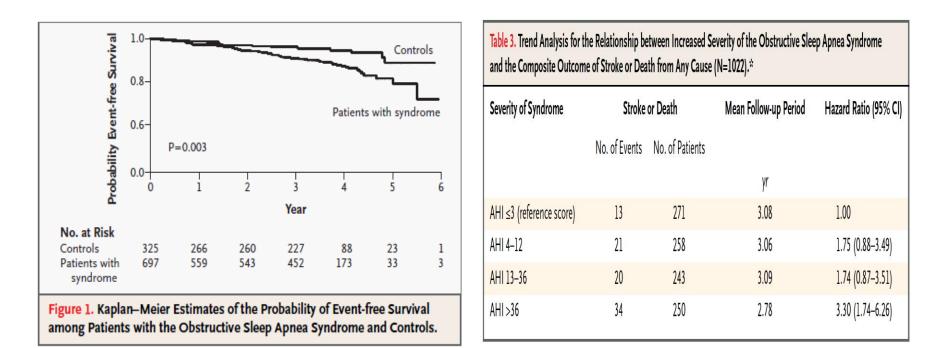
	Quartile				
	Ι	Ш	Ш	IV	p Value†
Coronary heart disease					
Full model	1.0	1.01	1.20	1.22	0.08
		(0.77–1.32)	(0.92–1.57)	(0.93–1.59)	
Parsimonious model	1.0	0.92	1.20	1.27	0.004
		(0.71–1.20)	(0.93–1.54)	(0.99–1.62)	
Stroke					
Full model	1.0	1.24	1.38	1.55	0.06
		(0.76-2.01)	(0.86–2.83)	(0.96-2.50)	
Parsimonious model	1.0	1.15	1.42	1.58	0.03
		(0.72–1.83)	(0.91–2.21)	(1.02–2.46)	


<u>Full model</u>: age, race, sex, smoking, diabetes, HTN, antihypertensive use, SBP, BMI, cholesterol. <u>Parsimonious model</u>: took out antihypertensive use

Shahar, AJRCCM, 2001


Causal Direction?

'Confounding'?

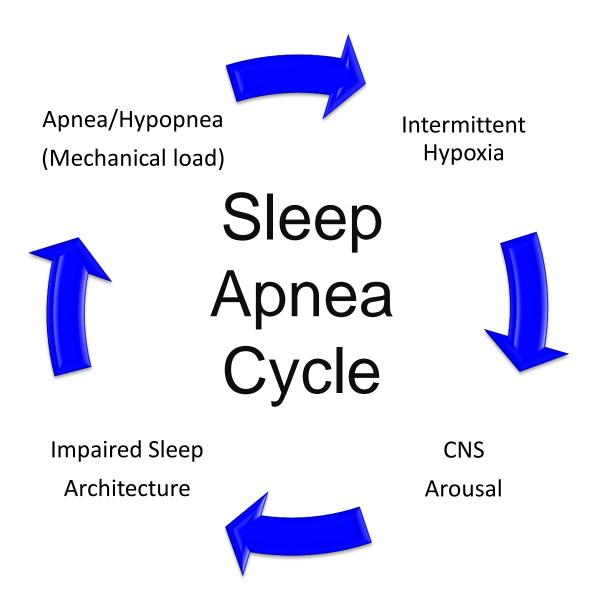

Yale Observational Cohort Study

3-6 years of follow-up

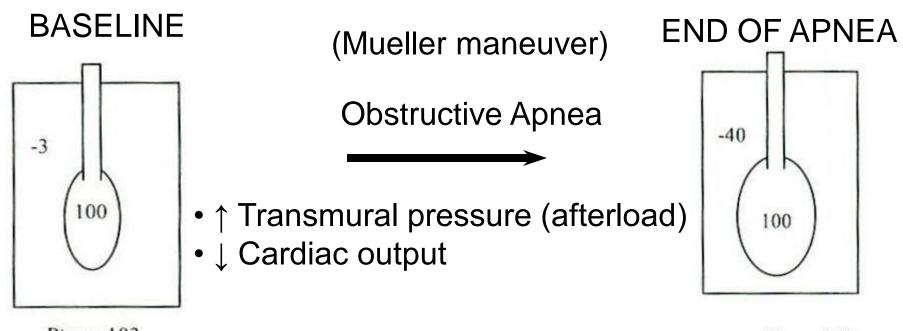
Obstructive Sleep Apnea as a Risk Factor for Stroke and Death

H. Klar Yaggi, M.D., M.P.H., John Concato, M.D., M.P.H., Walter N. Kernan, M.D., Judith H. Lichtman, Ph.D., M.P.H., Lawrence M. Brass, M.D., and Vahid Mohsenin, M.D.

Risk of TIA, Stroke, or Death


	Unadjusted Hazard Ratio	Adjusted Hazard Ratio
<u>Covariate</u>	<u>(95% C.I.)</u>	<u>(95% C.I.)</u>
Age (yrs)	1.09 (1.06-1.11)	1.08 (1.06-1.11)
Male sex	0.99 (0.62-1.60)	0.78 (0.48-1.28)
Body Mass Index	0.99 (0.97-1.02)	0.99 (0.96-1.02)
Current Smoker	1.21 (0.90-1.64)	1.46 (0.78-2.98)
Diabetes Mellitus	1.56 (1.02-2.59)	1.31 (0.76-1.26)
Hyperlipidemia	1.04 (0.64-1.68)	1.01 (0.61-1.66)
Hypertension	1.48 (1.01-2.28)	1.20 (0.75-1.90)
Atrial Fibrillation	1.56 (0.79-3.12)	0.91 (0.45-1.86)
Obstructive Sleep Apnea	2.24 (1.30-3.86)	1.97 (1.12-3.28)
Obstructive Sleep Apnea	2.24 (1.30-3.86)	1.97 (1.12-3.28)

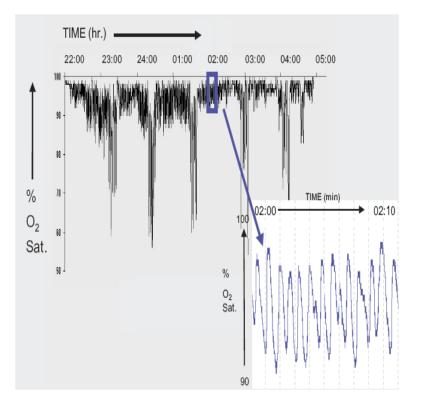
Selected Prospective Observational Studies of OSA and Cardiovascular Outcomes


- Myocardial Infraction: Peker, Eur Respir J, 2006
- Congestive Heart Failure: Gottlieb, Circulation, 2010
- Fatal/Non-fatal cardiovascular events: Marin, Lancet, 2005
- Nocturnal sudden death: Gami, NEJM, 2005
- All cause mortality: Young, Sleep, 2008

Sleep Apnea and Cardiovascular Disease (CVD)

- Evidence linking sleep apnea to CVD
- Mechanisms of CVD in sleep apnea

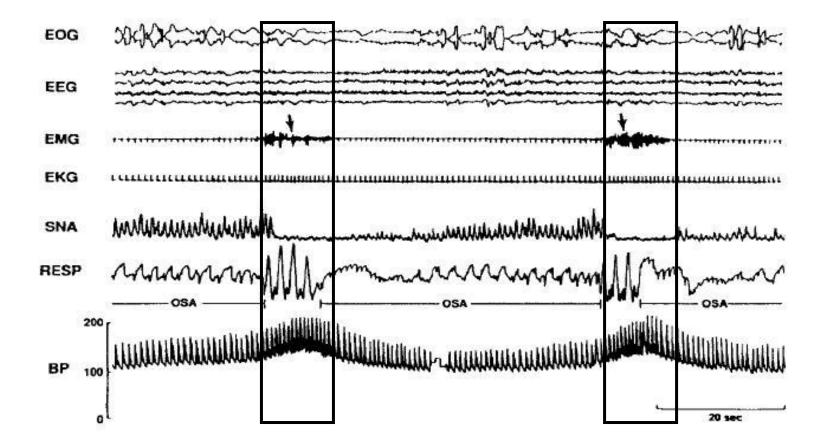
Mechanical Load in Sleep Apnea



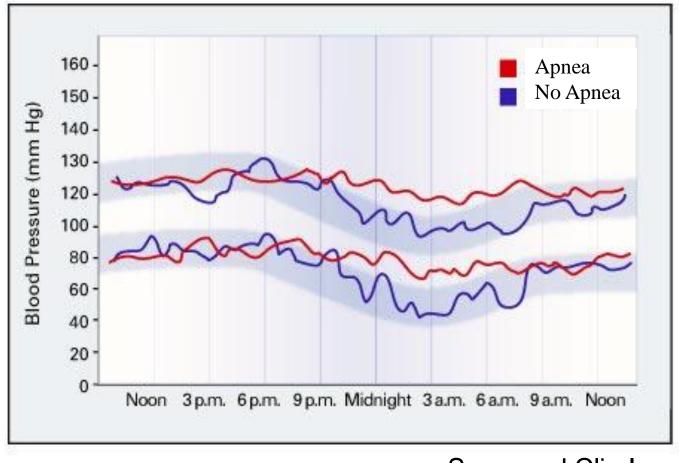
Ptm = 103

Ptm = 140

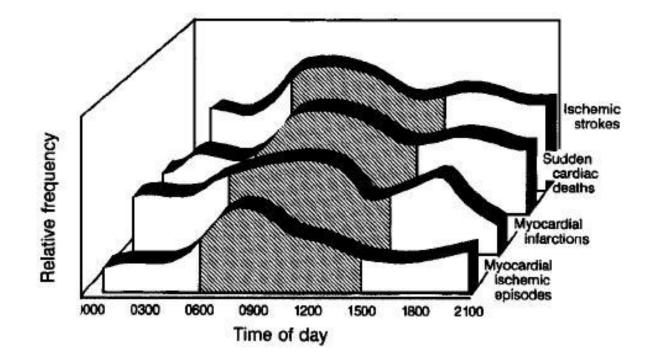
Bradley, Marcel Decker, 2000


Intermittent Hypoxia

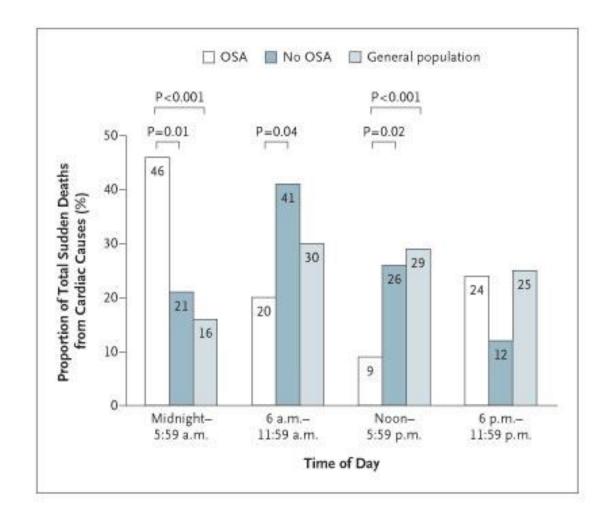
- Repetitive episodes of hypoxia and reoxygenation throughout the night
- Oxidative Stress
- Activation of vascular inflammatory pathways leading to atherosclerosis


Hayashi, Chest, 2003 Lavie, Sleep Med Review, 2004 Ryan, Circulation, 2005 Savransky, AJRCCM, 2007

Sympathetic Nervous System Activation


Wolk, Circulation, 2003

Circadian Blood Pressure and "Non-dipping"


Somers, J Clin Invest, 1995 Ancoli-Israel, Chest, 2002 Hla, Sleep, 2008

Normal Circadian Variation in Vascular Events

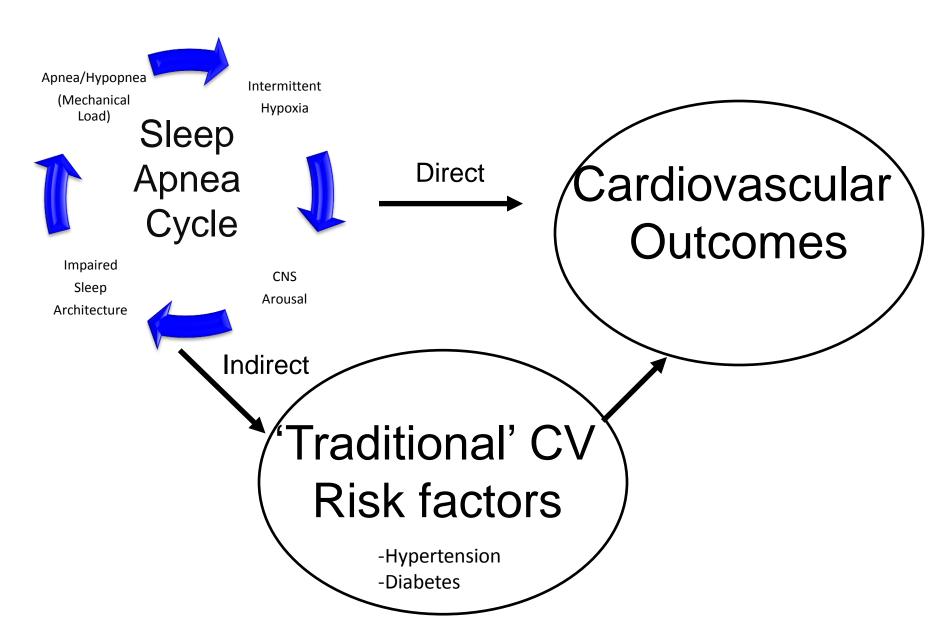
Marler; Stroke 1989

Day-night Pattern of Sudden Death in Obstructive Sleep Apnea

Gami; NEJM 2005

Impaired Sleep Architecture and Metabolic Dysregulation

- Short sleep duration:
 - \downarrow Glucose tolerance, \downarrow insulin release¹
 - \uparrow Hunger/appetite, Δ in leptin and ghrelin²
 - − ↑ Risk type 2 diabetes³
- Sleep apnea:
 - \downarrow Glucose tolerance, \downarrow insulin release⁴
 - − ↑ Risk type 2 diabetes⁵
- 1. Spiegel, Lancet, 1999
- 2. Spiegel, Ann Intern, Med 2004
- 3. Yaggi, Diabetes Care, 2006
- 4. IP, AJRCCM, 2001
- 5. Botros, Am J Med, 2009

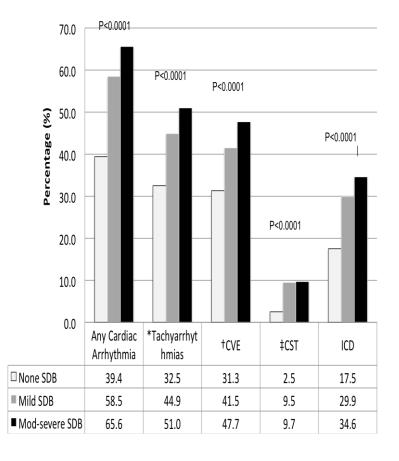

Obstructive Sleep Apnea as a Risk Factor for Type 2 Diabetes Mellitus

<u>Covariate</u>	Unadjusted HR (95%CI)	<u>Adjusted HR (</u> 95% CI)
Age	0.99 (0.98-1.02)	1.00 (0.98-1.02)
Gender	1.41 (0.44-4.51)	1.09 (0.34-3.57)
Race (non- caucasian)	1.35 (0.64-2.85)	1.13 (0.56-2.30)
Fasting Glucose	1.04 (1.04-1.05)	1.05 (1.03-1.06)
BMI	1.06 (1.03-1.09)	1.04 (1.01-1.07)
Change in BMI	0.73 (0.69-0.78)	0.76 (0.70-0.83)
Sleep Apnea*	1.53 (1.21-94)	1.43 (1.10-1.86)

* Per Quartile of AHI

Botros, Am J Med, 2009

Conceptual Model

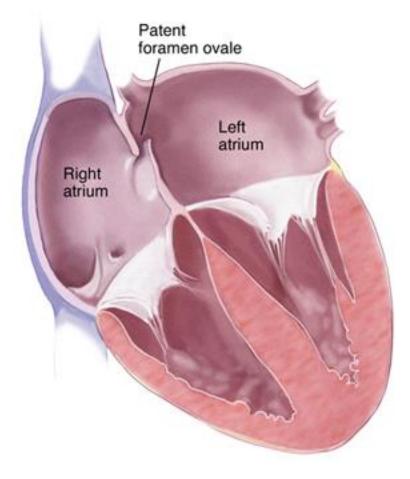

Risk is Greater for Stroke than for Coronary Heart Disease

		Adjusted HR Stroke	Adjusted HR CHD
Gottlieb 2010	Clean Lleast Llealth Study (man)	2.0	1 5
Redline 2010	Sleep Heart Health Study (men)	2.9	1.5
Arzt 2005	Wiesensie Clean Cabout Study	3.8	2.4
Hla 2015	Wisconsin Sleep Cohort Study		
Mooe 2001		3.4	1.0
Yaggi 2005	Yale Centers for Sleep Medicine	3.0	2.1
Shah 2010	rale centers for sleep medicine	5.0	2.1
Campos-Rodriguez 2014		6.4	1.8

Gottlieb, Circulation 2010;122:352 Redline, AJRCCM 2010; 182:269 Arzt, AJRCCM 2005; 172:1447 Hla, Sleep 2015;38:677 Mooe, AJRCCM 2001; 164:1910 Yaggi, N Engl J Med 2005; 353:2034 Shah, Sleep Breath 2010;14:131 Campos-Rodriguez, AJRCCM 2014;189:1544

Association of Nocturnal Arrhythmias with Sleep-disordered Breathing

Arrhythmia Type	<u>Odds</u> <u>ratio</u>	<u>(95% CI)</u>
Nonsustained ventricular tachycardia	3.40	(1.03-11.2)
Complex ventricular ectopy	1.74	(1.11-2.74)
Atrial fibrillation	4.02	(1.03-15.74)

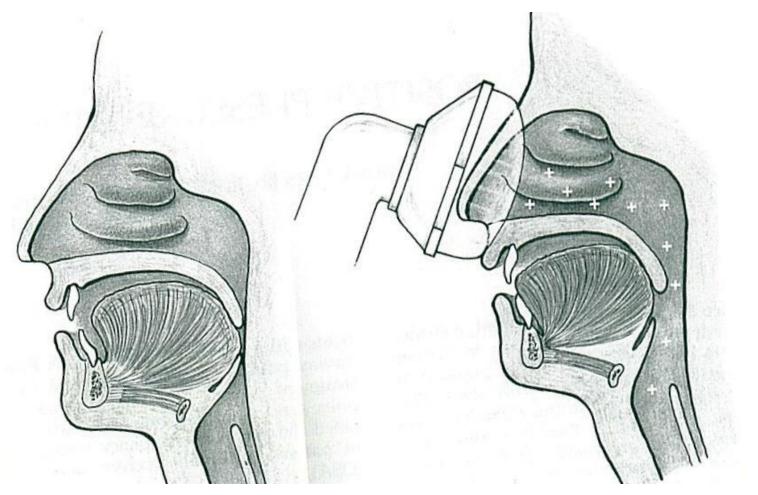


Mehra, AJRCCM, 2006

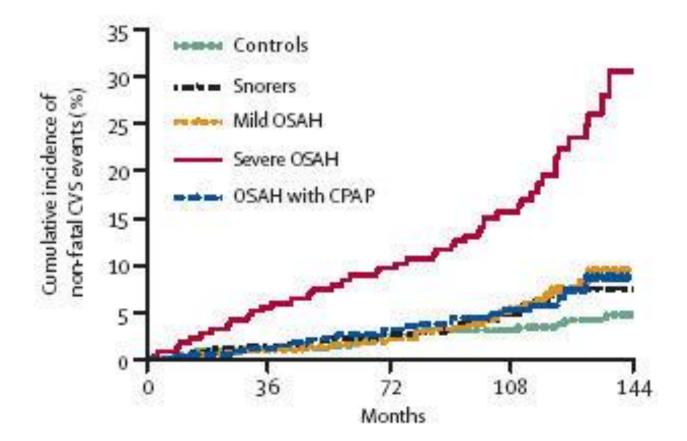
Selim, J Clin Sleep Med, 2016

Right to Left Shunt through Patent Foramen Ovale (PFO)

- PFO may give rise to ischemic stroke by means of paradoxical embolism
- Increased prevalence of PFO among patients with sleep apnea
- Transient right sided pressure increases during obstructive apneas permit R→L shunting through PFO

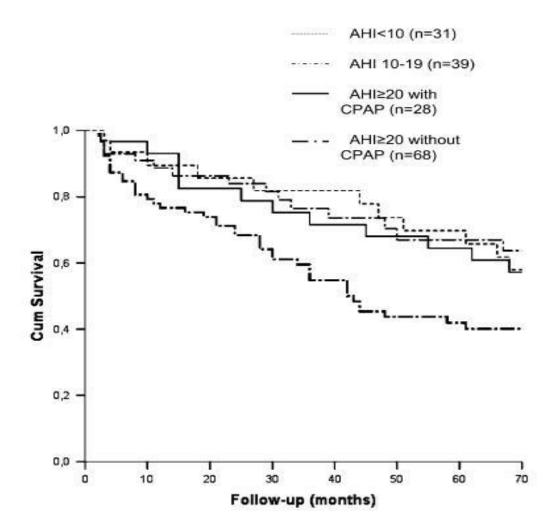


Lechat, NEJM, 1988 Beelke, Sleep, 2002 Shanoudy, Chest, 1998


Sleep Apnea and Cardiovascular Disease (CVD)

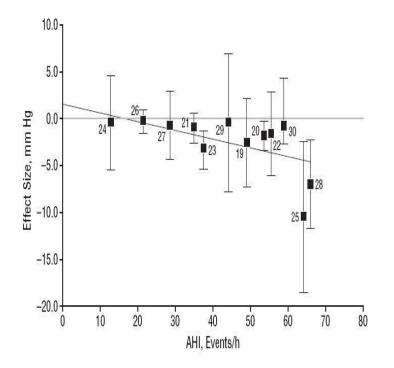
- Evidence linking sleep apnea to CVD
- <u>Mechanisms</u> of CVD in sleep apnea
- <u>Strategies</u> examining impact treating sleep apnea on CVD

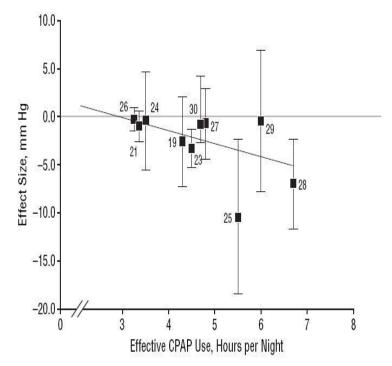
Continuous Positive Airway Pressure (CPAP)



Cardiovascular outcomes in Obstructive Sleep Apnea With and Without Treatment

Marin, Lancet, 2005

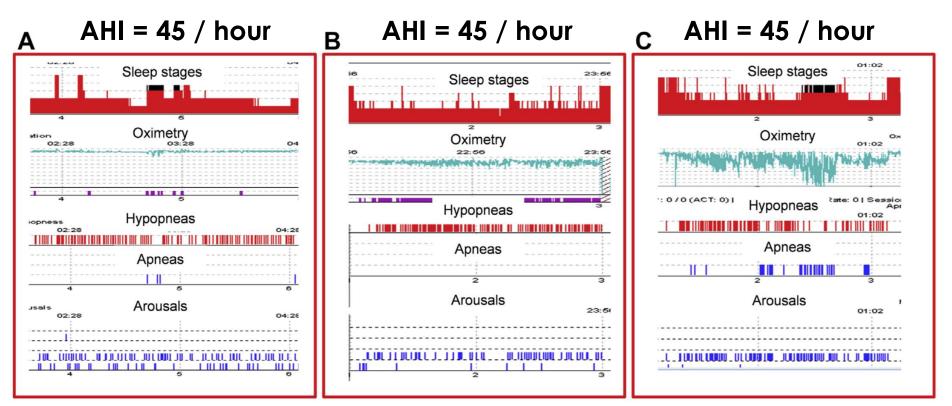

Stroke Mortality in Sleep Apnea With and Without Treatment


Martinez-Garcia; AJRCCM 2009

Short-term Impact of CPAP on Blood Pressure

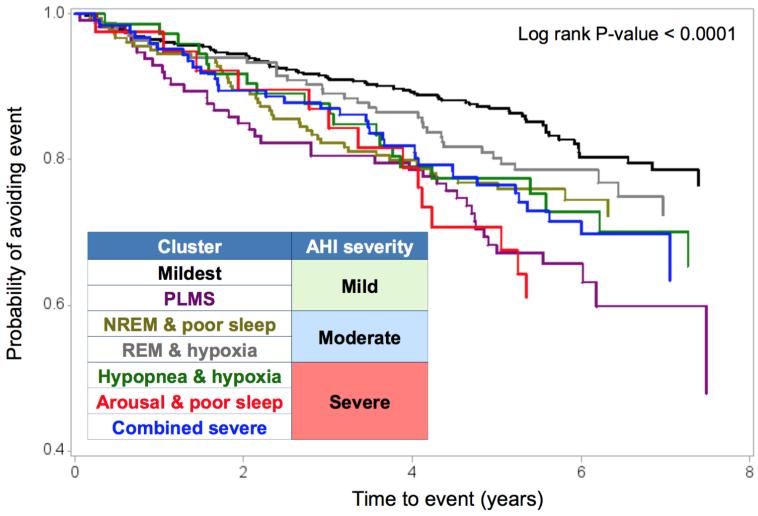
Severity of Sleep Apnea

Effective CPAP Use

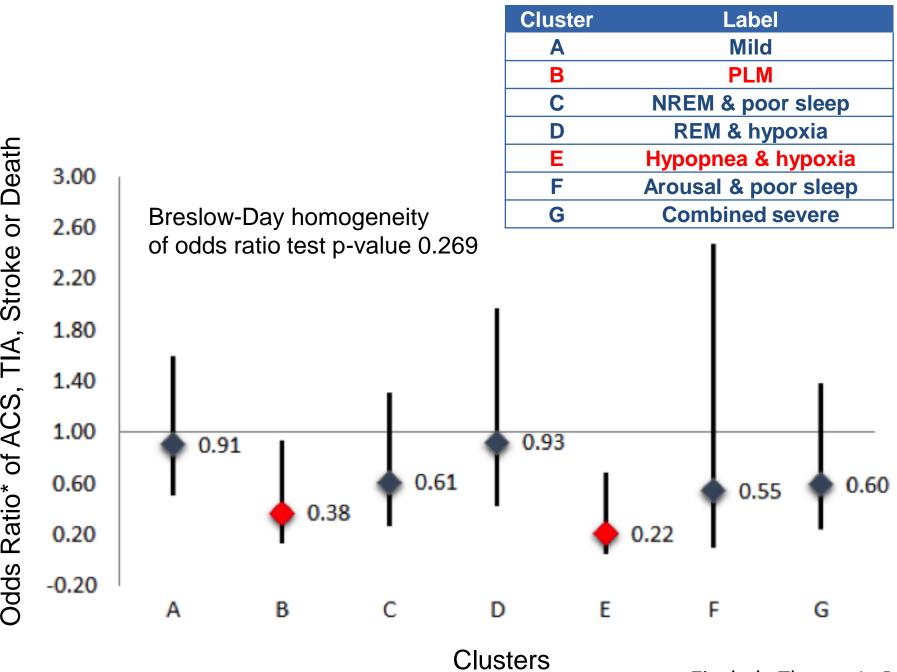

Haentjens, Arch Int Med, 2007

Challenges in Designing Long-Term RCTs Examining Cardiovascular Endpoints Using PAP

- Pharmacological therapies exist for the many of the causal biologic pathways between OSA and CVD
 - Cardiovascular event rates are decreasing
- Treatment adherence with PAP
 - Consistent dose-response relationships observed
 - Treatment during REM sleep may be particularly important
- Conceptual issues regarding equipoise
 - Safety considerations re: control patients over longer term (e.g., drowsiness-related accidents)
- Heterogeneity of sleep apnea

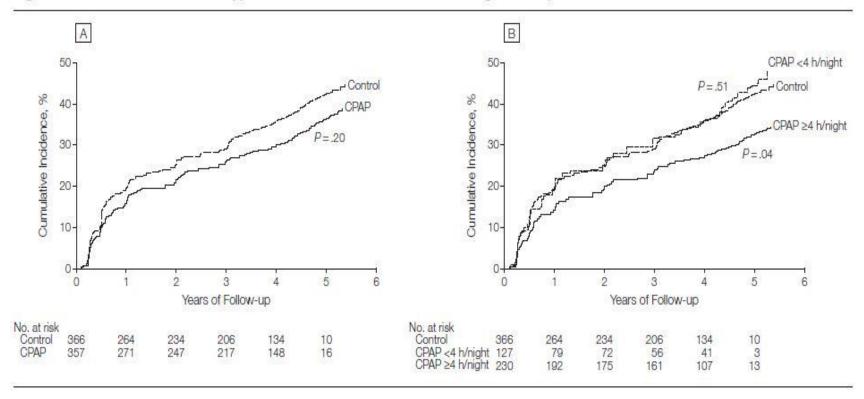

OSA's Heterogeneity

AHI (events/hr)	5 to < 15	15 to < 30	≥ 30
OSA Severity	Mild	Moderate	Severe

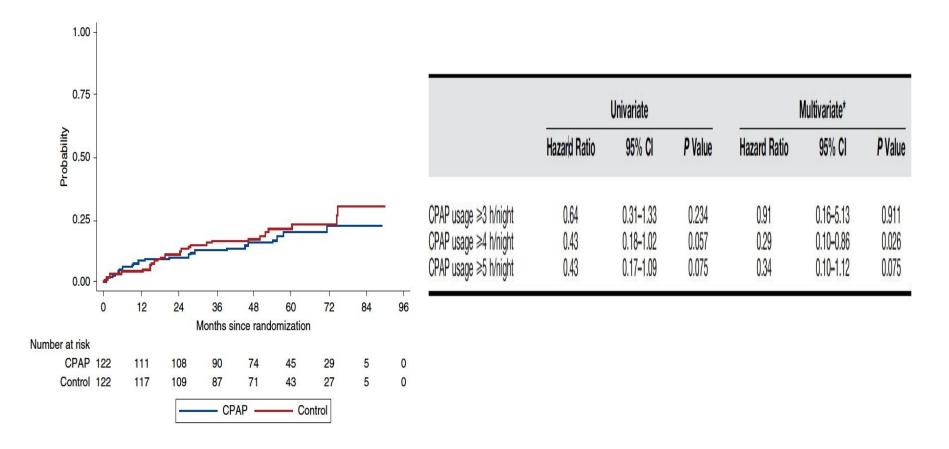


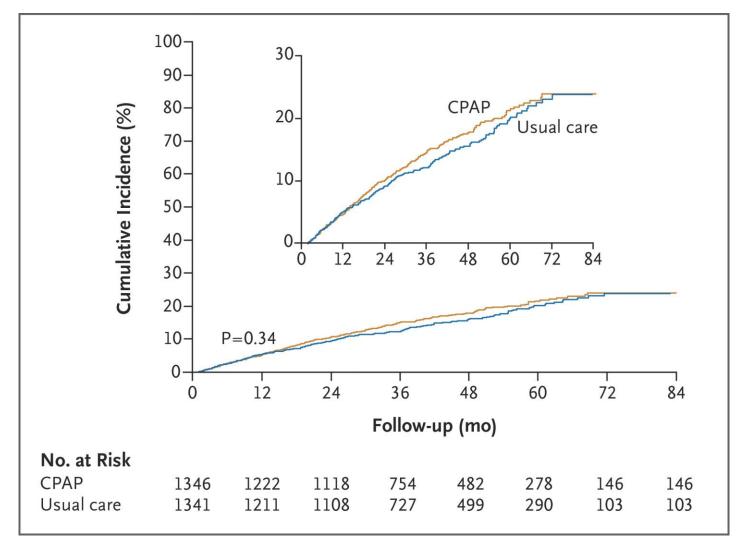
Chest. 2016;149(1):11-13

Results: outcomes & clusters Kaplan-Meier Plot

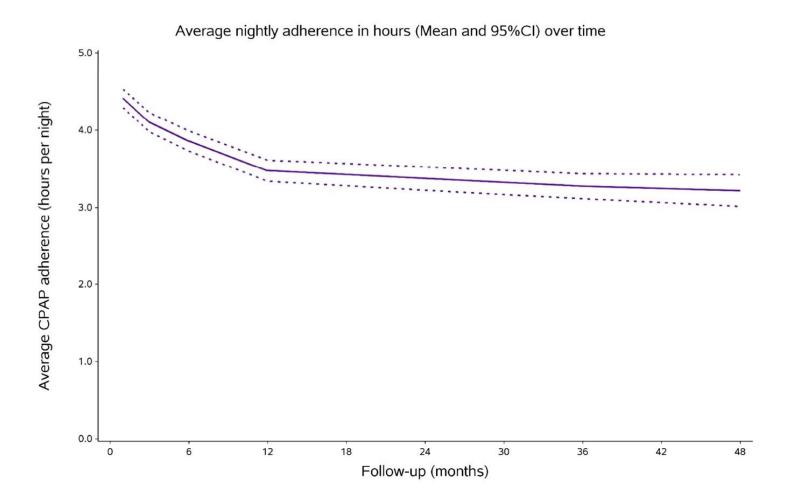

Zinchuk, Thorax, In Press

Zinchuk, Thorax, In Pres


CPAP on Incidence of Hypertension and Cardiovascular Events among Non-sleepy Patients


Barbe, JAMA, 2012

CPAP on Cardiovascular Outcomes in Patients with CAD and Non-sleepy OSA


Peker, AJRCCM, 2016

SAVE Trial

McEvoy, NEJM, 2016

SAVE TRIAL: CPAP Adherence Over Time

McEvoy, NEJM, 2016

SAVE Trial and Stroke Outcomes

0.06

Dose-Response

Propensity-Score Matched

			Hazard Ratio		
		0.3	1.0	4.0	
Overall	70 (5.7%)	71 (5.8%)	\diamond	0.95	(0.68 - 1.32)
>5.655	8 (3.3%)	11 (4.5%)		0.69	(0.28 - 1.73)
4.17 to 5.655	9 (3.7%)	14 (5.8%)		0.61	(0.27 - 1.42)
2.765 to 4.17	15 (6.1%)	18 (7.3%) —	-	0.78	(0.39 - 1.55)
1.175 to 2.765	17 (7.0%)	15 (6.1%)		1.10	(0.55 - 2.21)
0 to 1.175	18 (9.3%)	10 (5.2%)	++	1.73	(0.80 - 3.75)

	CPAP + Usual care	Usual care	Hazard Ratio (95% CI)	P value
Outcome	(n=561)	(n=561)		
Primary efficacy				
Composite primary outcome, no. (%)	86 (15.3)	98 (17.5)	0.80 (0.60 to 1.07)	0.13
Secondary outcomes				
Components of primary endpoint				
CV Death	12 (2.1)	12 (2.1)	0.90 (0.41 to 2.01)	0.81
Myocardial infarction	18 (3.2)	14 (2.5)	1.19 (0.59 to 2.39)	0.63
Stroke	19 (3.4)	31 (5.5)	0.56 (0.32 to 1.00)	0.05
Hospitalization for heart failure	9 (1.6)	10 (1.8)	0.82 (0.34 to 2.03)	0.67
Hospitalization for unstable angina	44 (7.8)	41 (7.3)	0.99 (0.64 to 1.51)	0.95
Hospitalization for TIA	1 (0.2)	4 (0.7)	0.22 (0.03 to 2.01)	0.18
Other vascular endpoints				
Composite of ischaemic CV events	77 (13.7)	87 (15.5)	0.81 (0.59 to 1.10)	0.17
Composite of major CV events	41 (7.3)	54 (9.6)	0.69 (0.46 to 1.04)	0.08
Composite for cerebral events	20 (3.6)	35 (6.2)	0.52 (0.30 to 0.90)	0.02
Composite for cardiac events	79 (14.1)	73 (13.0)	1.01 (0.74 to 1.39)	0.93
Revascularisation procedures	44 (7.8)	33 (5.9)	1.25 (0.79 to 1.96)	0.34
All-cause death	17 (3.0)	26 (4.6)	0.60 (0.32 to 1.10)	0.10
New onset AF (ECG confirmed)	14 (2.5)	7 (1.2)	1.84 (0.74 to 4.55)	0.19
Newly diagnosed diabetes mellitus	33 (5.9)	40 (7.1)	0.77 (0.48 to 1.27)	0.26

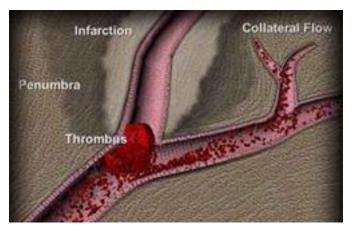
McEvoy, NEJM, 2016

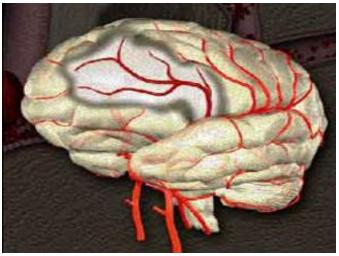
Acute Stroke Epidemiology

- Patients with acute TIA/minor stroke ideal candidates for prevention of recurrent vascular events

•

- 25% of patients with TIA have completed stroke, MI, death in with 90 days of initial event (half of these events occur in the first 72 hours)
- New approach to reduce recurrent vascular event rate is needed (particularly in acute post-TIA period)
- The treatment of sleep apnea may represent a novel therapeutic target


AHA Statistical Update, 2015 Johnston, NEJM, 2002 Johnston, JAMA, 2000 Yaggi, Lancet Neurology, 2002


Unique Challenges in Treating Sleep Apnea Among Patients with Stroke

- Screening
 - Less excessive daytime sleepiness
 - Lower BMI
 - AHA stroke Guidelines recommend objective testing
- Logistical
 - Impaired mobility
 - Competing demands
- Adherence
 - Cognitive dysfunction
 - Weakness in extremities
 - Facial droop
 - Less excessive daytime sleepiness

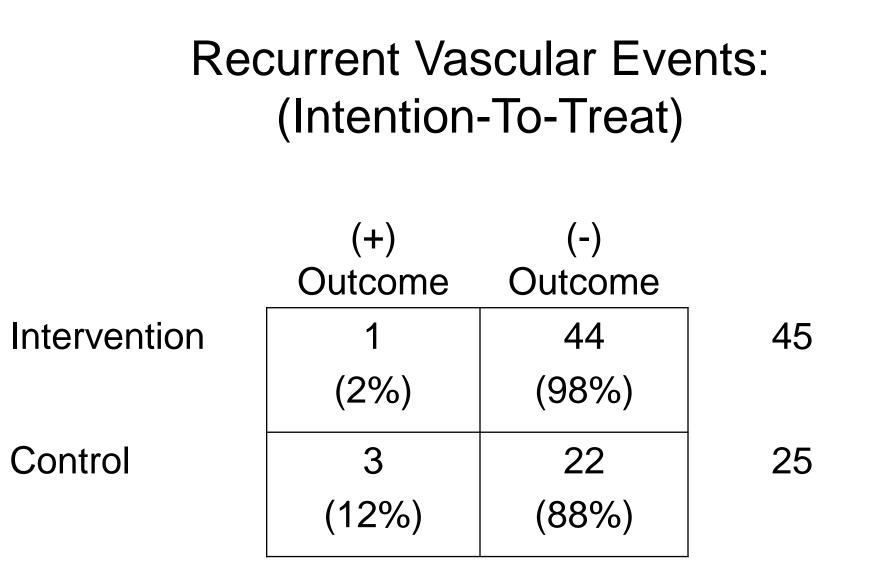
Bassetti, Neurology, 2009 Arzt, Stroke, 2011

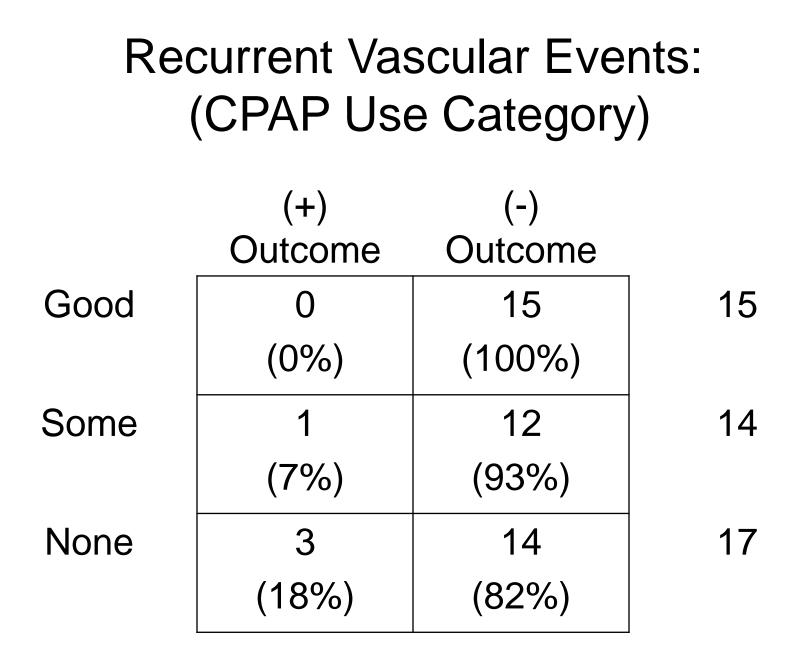
Early Treatment of Sleep Apnea in Acute Stroke: The Concept of the Ischemic Penumbra

• Within the ischemic cerebrovascular bed, there are two major zones of injury: the core ischemic zone and the "ischemic penumbra" (ischemic but still viable tissue)

Feasibility Study Methods: Overview **Design**: Randomized controlled trial (90 days)

- **Sample**: TIA patients (focal neurologic deficit < 24 hours confirmed by study neurologist)
- Setting: Emergency departments/inpatients at 3 CT hospitals
- Intervention (N=45):
- Early/immediate Áuto-CPAP (ideally within 1st or 2nd night of TIA) for 90 days (stopped if no evidence of sleep apnea/responding to flow limitation)
- Sleep study at 90 days
- Control (N=25): Usual care.


Time to CPAP


Intervention:	

<u>Time</u>	<u>(n=45)</u>
From TIA symptom onset, Hours: mean (+/-SD)	39 (23)
<24 hours: n (%)	8 (18)
≥ 24 < 48 hours: n (%)	27 (60)
≥ 48 hours	10 (22)

Auto-Titrating CPAP Use

	Intervention Patients on
CPAP Use Category	<u>CPAP</u>
Number hrs/night used: mean (+/-SD)	5.6 (1.9)
Range	1.5-8.5
CPAP Use: N (%)	-
None: 0 hrs/night or 0 nights	0 (0)
Some: <4 hrs/night or <70% nights	14 (48)
Good: \geq 4 hrs/night and \geq 70% nights	15 (52)

CPAP Results in Improvement in Stroke Severity at 30days in Patients with Sleep apnea and Acute <u>Stroke</u>

Outcome:	Ove	Sleep	Apnea I Use [†]	oy CPAP		
	Intervention (N=31)	Control (N=24)	P- value	None (N=13)	Some (N=6)	Excellent (N=10)
Stroke severity (NIHSS) median change from baseline to 30-days	-3.0	-1.0	0.03	-1.0	-2.5	-3.0

Bravata, Sleep, 2012

Early Treatment of Sleep Apnea in Acute Stroke: Recovery

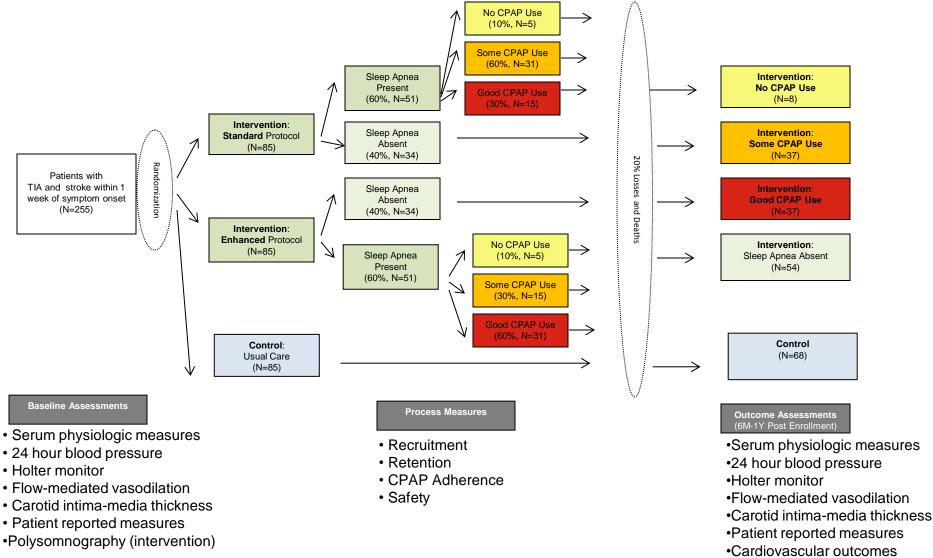
Recovery of original circuity

- Recovery of surviving intralesional neurons
- Inflammatory pathways

Adaptation of remaining circuity

- Neuroplasticity
- Role of glymphatic system?

Sleep Tight


Sleep Apnea in **TI**A & Stroke: Reducing Cardiovascular Risk With Positive Airway Pressure

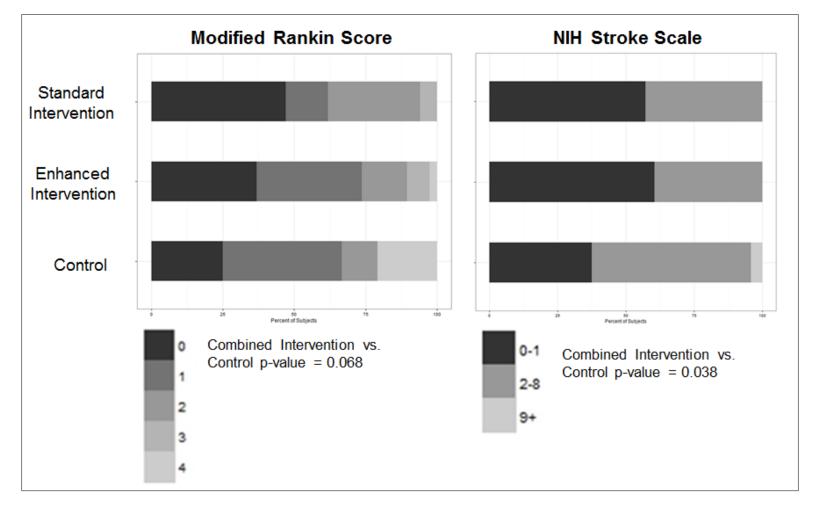
U34 HL105285-01

INDIANA UNIVERSITY SCHOOL OF MEDICINE

Sleep Tight Study Design: A Diagnosis and Treatment Intervention Strategy Effectiveness Trial

Polysomnography

Sleep Data


	Control*	Interv	P-Value	
Polysomnographic Feature	(n=84)	Standard	Enhanced	
	(11=04)	(n=86)	(n=82)	
Obstructive sleep apnea: (%)	69.0	73.6	80.4	0.35
Central sleep apnea: (%)	3.4	0	0	0.30
AHI, events/hr (Mean \pm SD)*	$\textbf{28.5} \pm \textbf{21.1}$	23.7 ± 19.6	21.6± 17.8	0.39
Oxygen Desat Index (4%) ,(Mean \pm SD)*	20.6 ± 25.8	17.4 ± 17.7	21.0 ± 32.1	0.26
T90, (Mean \pm SD)*	6.2 ± 5.7	4.8 ± 10.1	7.0 ± 11.2	0.78
Arousal Index (Mean \pm SD)*	25.8 ± 14.9	21.7 ± 10.9	24.4 ± 13.0	0.54
Epworth Sleepiness Scale	8.4 ± 5.4	6.9 ± 5.0	7.0 ± 3.9	0.64

* Among patients with Sleep Apnea

CPAP Adherence

Outcome		Interventio with Slee			
		Standard Enhanced		Unadjusted [†] P-Value	Adjusted [†] P-Value
CPAP Adherence Categories:* n (%)				
Good		14 (38.9)	18 (40.0)	0.01	0.95
Some		11 (30.6) 16 (35.6)		0.81	0.95
None/Poor		11 (30.6)	11 (24.4)		
	n	35	45		
Number of hours of CPAP use	$Mean\pmSD$	3.9 ± 2.1	4.3 ± 2.4	0.46	0.65
per CPAP-use night	Median (range)	4.5 (0.2-7.5)	4.5 (0.1-9.4)	0.10	
	n	35	45		
Number of hours of CPAP use per night	Mean \pm SD	3.3 ± 2.3	3.4 ± 2.8	0.30	0.51
	Median (range)	3.4 (0.0-7.6)	3.7 (0.0-8.8)	0.30	0.51

Sleep Tight Final Clinical Outcomes Among Patients with Sleep Apnea

Recurrent Vascular Event Rate

Endpoint		Control			Intervention Arms		
		N	% of those randomized	Rate per 100 person-years of follow-up	N	% of those randomized	Rate per 100 person-years of follow-up
WHOLE COHORT		84	100	68.7	168	100	127.3
All-cause Mortality	People	2	2.4	2.9	4	2.4	3.1
Cardiovascular Death	People	0	0.0	0.0	3	1.8	2.4
Non-Cardiovascular Death	People	2	2.4	2.9	1	0.6	0.8
Stroke	People	6	7.1		6	3.6	
Slicke	Events	6		8.7	7		5.5
Acute Myocardial Infarction	People	1	1.2		0	0.0	
(AMI)	Events	1		1.5	0		0.0
Unstable Angina	People	0	0.0		0	0.0	
Hospitalization	Events	0		0.0	0		0.0
Coronary Revascularization	People	0	0.0		3	1.8	
Urgent	Events	0		0.0	3		2.4
Any Above Events	People	9	10.7		10	6.0	
	Events	9		13.1	14		11.0

Summary: Evidence/Mechanisms

- Sleep apnea is independently associated with TIA, Stroke, M.I., cardiovascular mortality, allcause mortality.
- Association between sleep apnea and diabetes/HTN suggests that these factors may be on the causal pathway between sleep apnea and cardiovascular disease.
- Mechanisms for the cardiovascular risk conferred by sleep apnea include intermittent hypoxia, sympathetic nervous system activation, mechanical load, and impaired sleep architecture

Summary: OSA's Heterogeneity

- AHI may not be the best predictor of OSArelated morbidity
- There is significant physiologic heterogeneity in sleep apnea with implications for risk of cardiovascular outcomes and responsiveness to treatment
- Multiple sleep-associated stressors that reflect distinct pathophysiologic pathways can be measured using sleep monitoring and may serve to better predict outcomes and benefits of treatment

Summary: Treatment Strategies

- Prospective observational studies suggests treatment with CPAP attenuates risk of cardiovascular/cerebrovascular outcomes
- Short-term randomized trial looking at intermediate measures of cardiovascular
- Long-term randomized controlled trials have not confirmed this benefit.
- Challenges exist in conducting long-term randomized controlled trials with CPAP: (i.e., CPAP adherence, equipoise, and physiologic heterogeneity of sleep apnea)
- Treatment of sleep apnea may represent a novel therapeutic target for <u>acute</u> TIA/stroke that could lead to improved patient outcomes



Fig. 1: Special incidence density curve, showing number of nodding-off events per lecture (NOELs) per 100 attendees over length of time of presentation.

Acknowledgements:

John Concato, M.D. Judy Lichtman, Ph.D. Vahid Mohsenin, MD Dawn Bravata, M.D. Nancy Redeker, Ph.D, RN Sangchoon Jeon, Ph.D. Li Qin, PhD Neomi Shah, M.D., M.P.H. Nader Botros, MD, MPH Bernardo Selim, M.D. Lauren Tobias, M.D. Andrey Zinchuck, M.D.

Yale Centers for Sleep Medicine (YNHH and VA CT Sleep Medicine Centers) VA Clinical Epidemiology Research Center (CERC) Yale Centers for Sleep Disturbance in Acute and Chronic Conditions (P20) VA Career Development Program VA Merit Review Program (DREAM, OPTIMAL-HF) U34 NHLBI Clinical Trials Planning Grant (SLEEP TIGHT)