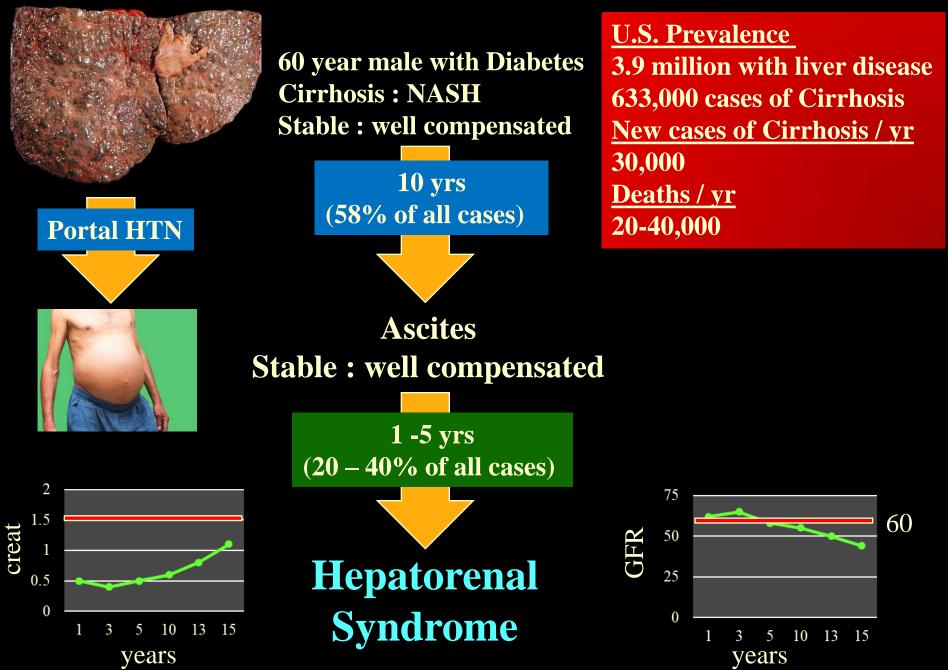
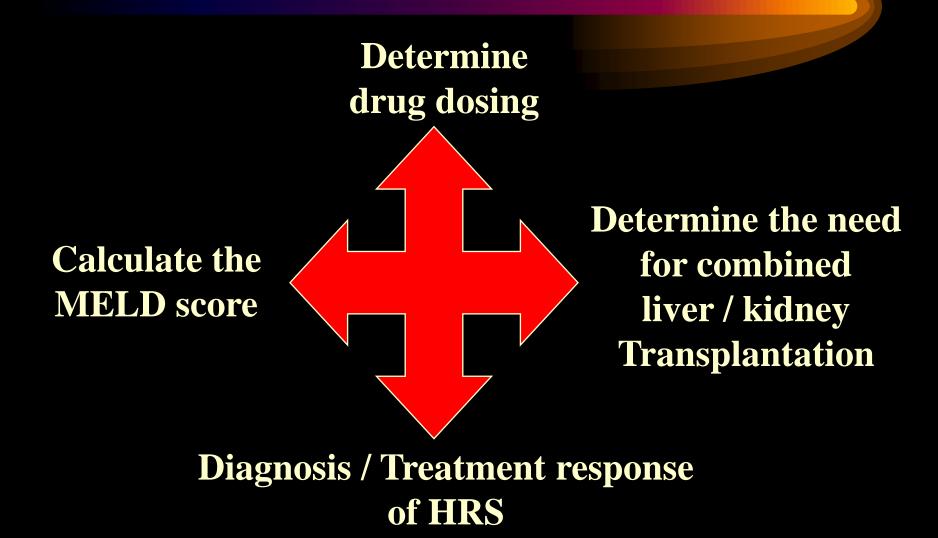
Hepatorenal Syndrome 2018

Warren Kupin, MD FACP Professor of Medicine Miami Transplant Institute <u>Katz Family Division of Nephrology</u> and Hypertension


University of Miami Miller School of Medicine

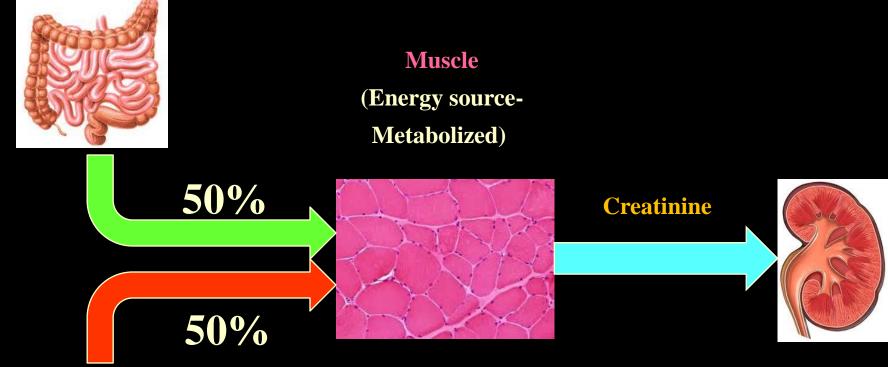
Case Presentation



Outline of Discussion Topics

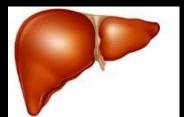
- What are the diagnostic criteria for Hepatorenal Syndrome (HRS)?
- Does a patient with HRS have Acute Kidney Injury or Chronic Kidney Disease or Both ?
 - Or is it Fake News and there is no "True" kidney disease ?
- What is the pathophysiology behind the development of HRS ?
- What therapeutic options are available for HRS ?
- Does a patient with Cirrhosis and HRS need a Liver Transplant only or a combined Liver and Kidney Transplant ?
- Will we finish this topic before noon ?

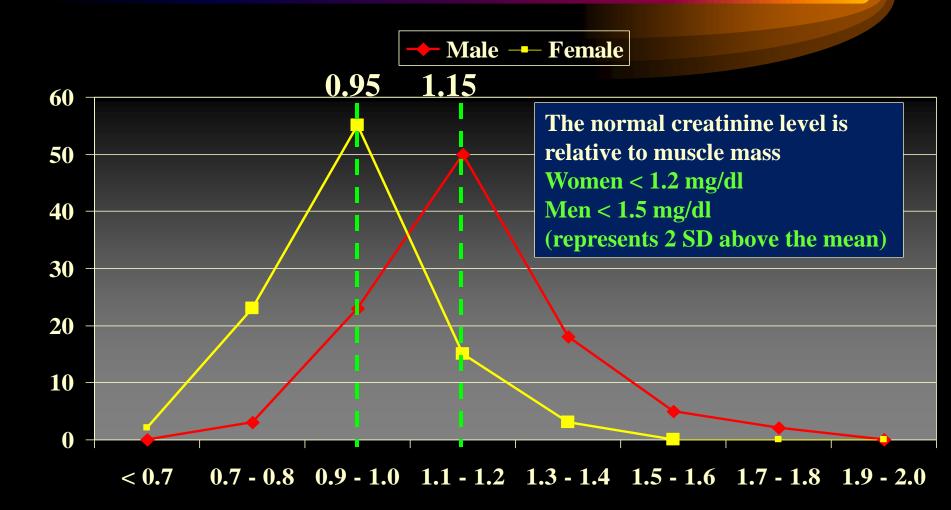
Importance of Accurate Assessment of Renal Function in Liver Disease



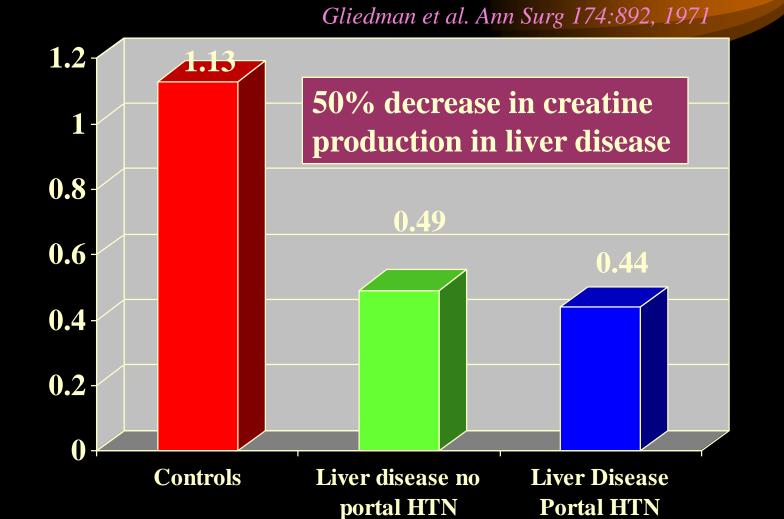
Serum Creatinine

- Creatine
 - <u>Synthesized in the liver</u> and stored in muscle
 - Also ingested orally and localized to muscle
- Creatinine
 - <u>Cyclic anhydride of creatine</u> (nonenzymatic)
 - End product of muscle metabolism
- Renal excretion of creatinine
 - GFR filtration
 - Tubular secretion


Oral Ingestion-Meat (creatine)



Hepatic Synthesis


(creatine)

Range of Creatinine Values in the Population

Creatine Production in Patients with Cirrhosis

Lower Baseline Creatinine Levels than the Normal Population

- Cirrhosis

- Minimal protein intake with severe malnutrition
- Impaired liver synthesis of creatine
- Pregnancy
- Volume expansion and an increase in GFR
 Extremes of age/nutrition pediatric / elderly
 - Baseline or "normal" creatinine in these conditions may be 0.4 - 0.6 mg/dl
 - Patients can be in AKI or CKD in all these circumstances with serum creatinines of 1.1 mg/dl

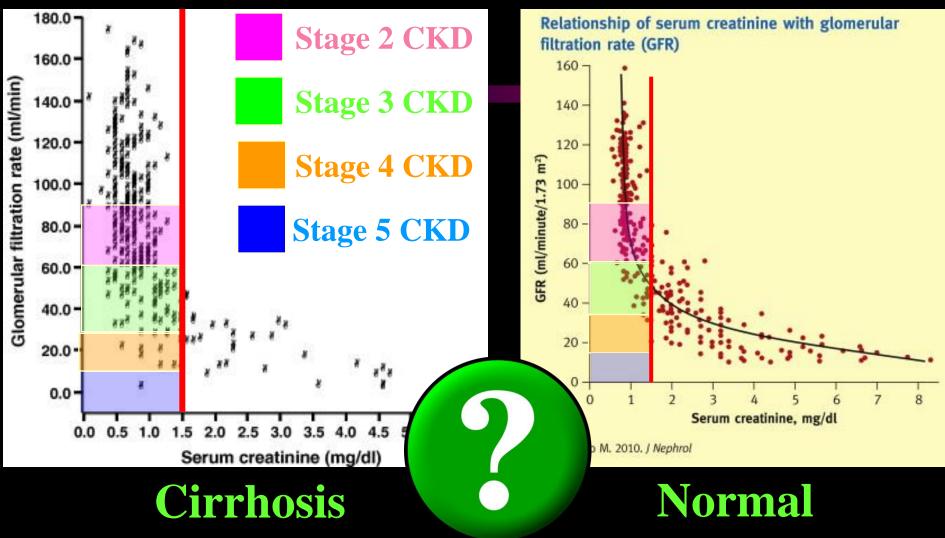
Bilirubin Interference and Creatinine Measurement Jaffe Reaction Creatinine + picric acid Creatinine - picric acid

Reaction is read at a specific wavelength (570)

<u>Bilirubin absorbs light at 570 which leads to a spuriously</u> <u>low serum creatinine</u> <u>Usually noted with a bilirubin level > 25 mg/dl</u>

Assessment of Renal Function in Cirrhosis: Inaccuracy of the Serum Creatinine

Decreased Protein Intake


Decreased Muscle Mass

Decreased Hepatic Creatine Synthesis

Spuriously Low Creatinine Measurement with Hyperbilirubinemia

Arroyo V, J Hepatol 46:935, 2007

GFR and Cirrhosis

At serum Creatinine levels < 1.5 mg/dl : a significant proportion of patients with cirrhosis will have GFRs < 60 cc/min : much greater than the general population

Kidney Function in Cirrhosis

Creatinine

Real and Spurious decrease in serum concentration

Renal Function "appears" better than it really is

GFR

<u>True decline in GFR</u> compared to the general population

Majority of these patients will have serum creatinine levels < 1.5 mg/dl

The CKD-EPI formula is not an accurate predictor of GFR and alternative formulas using cystatin C may be considered

Assessment of Renal Function in Cirrhosis: Inaccuracy of the BUN

Decreased Protein Intake

Decreased hepatic synthesis

Reduced efficacy of the BUN/Cr ratio to detect pre-renal azotemia

Possible disproportionate increase in BUN in the setting of GI bleed

Hepatorenal Syndrome : Diagnostic Criteria – International Ascites Club 2015

- Cirrhosis or Acute Hepatic disease and Portal Hypertension
- Cr Increase of 0.3 mg/dl in 48 hrs or a 50% increase over 7 days
- Absence of nephrotoxic agents
- Absence of shock
- Absence of renal parenchymal disease
 - Proteinuria < 500 mg/d</p>
 - No Hematuria
 - Normal renal ultrasound (size/echogenicity)
- <u>No improvement after 48 hours following</u>
 - <u>Diuretic withdrawal</u>
 - volume expansion with
 - <u>Albumin 1 g/kg/day (maximum 100 g)</u>

Definition of AKI in the General Population

- Increase of the serum creatinine by 0.3 mg/dl within 48 hours
- OR
- Increase in serum creatinine by > 50% (over 7 days)

OR

 Urine output < 0.5 ml/kg/hr for more than 6 hours International Ascites Club 2015 Revised Definition of AKI in Patients with Cirrhosis

 Increase of the serum creatinine by 0.3 mg/dl within 48 hours

hr for more than 6

- OR
- Increase in serum creatinine by > 50%
 (over 7 days)
- OR
- Urine output hours

Conditions Causing Simultaneous Renal and Liver Failure

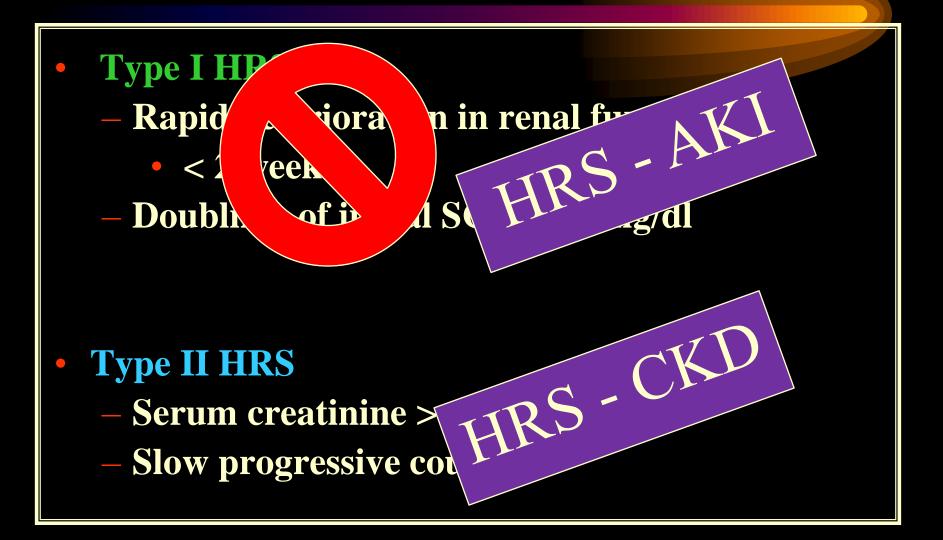
- Hepatorenal syndrome
- Acute tubular necrosis
- Volume depletion
- Circulatory
 - CHF
 - Shock
- Genetic: ADPKD
- Collagen vascular disease

- Infections
 - Sepsis
 - Leptospirosis
 - Reye's syndrome
 - Hepatitis A
 - Hepatitis B
 - Hepatitis C

Conditions Causing Simultaneous Renal and Liver Failure

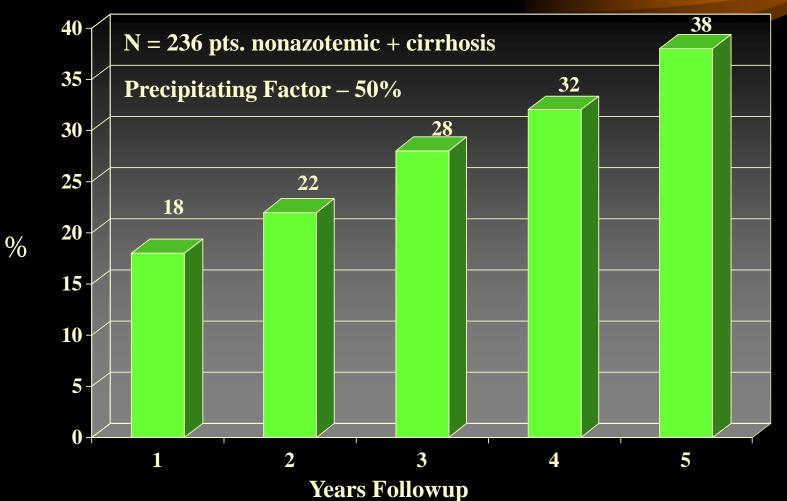
- Toxins and Medication
 - Methoxyflourane
 - Carbon tetrachloride
 - Tetracycline
 - Acetaminophen
 - Elemental phosphorous
 - Toluene
 - Immunosuppressive drugs

- Miscellaneous
 - Amyloidosis
 - Sarcoidosis
 - Wilsons disease
 - Hemochromatosis
 - Venooclussive disease
 - Cryoglobulinemia

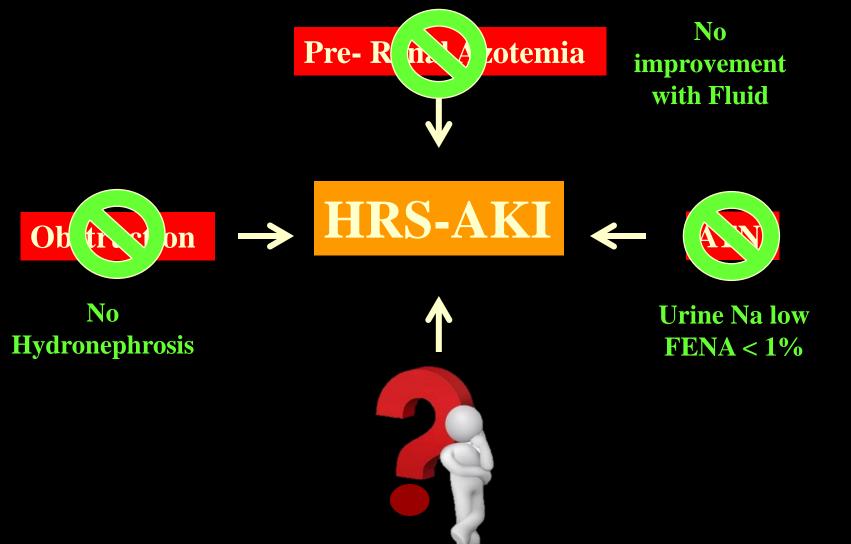

Key Point

 Hepatorenal syndrome does not include every disease that affects the liver and kidney simultaneously

 Hepatorenal syndrome is a <u>distinct syndrome</u> that first requires the <u>sequential initial</u> <u>development of liver dysfunction accompanied by</u> <u>portal hypertension and ascites</u> culminating in the development of <u>acute kidney injury</u> Hepatorenal Syndrome : "Non Essential" Diagnostic Criteria


- Additional <u>supportive</u> criteria but not required for diagnosis
 - -Urine volume < 500 ml/day (65%)
 - -Urine sodium < 10 mEq/l
 - -Urine osm > plasma osm
 - -Serum sodium < 130 mEq/l

Clinical Types of Hepatorenal Syndrome

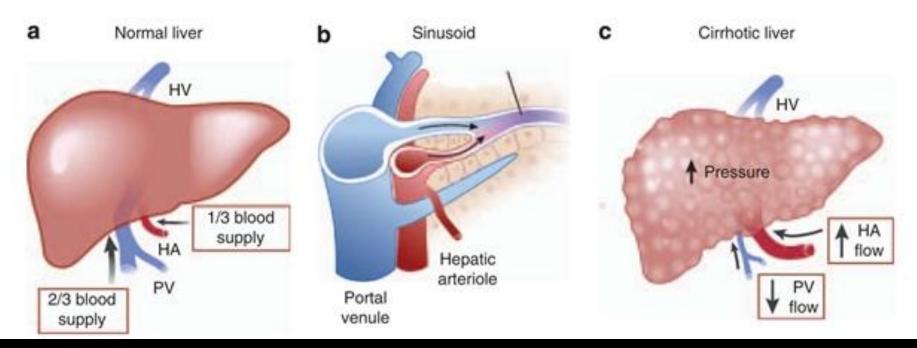


Probability of Hepatorenal Syndrome

Gines A, et al. Gastroenterology 105:229-236,1993

AKI Classification of Hepatorenal Syndrome

Portal HTN


Compression, Distortion, Obliteration of Hepatic Architecture

Decreased Hepatic production of vasodilatory substances

Activated Hypercontractile Intrahepatic stellate cells

Oliver J. Kidney Intern 77:669, 2010

Intrahepatic Pressure and Early Portal HTN

Hepatofugal

NFPF (Non Forward Portal Flow) Blood flow Away from the liver versus Hepatopetal : normal flow into the liver

Backward Theory of Ascites Formation

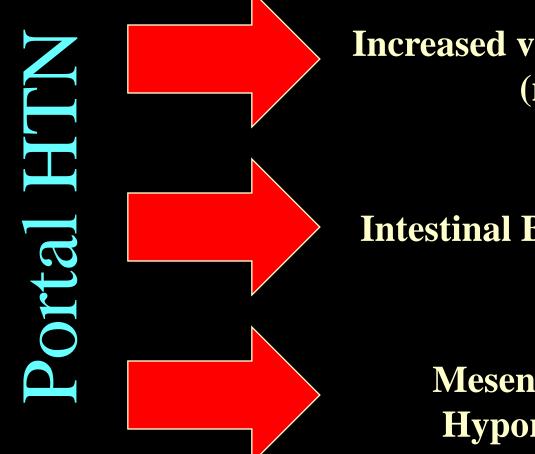
Portal Hypertension / Hypoalbuminemia

Reversal of Starling's Equilibrium in the Splanchnic Microcirculation

Increased Splanchnic Lymph Formation

Ascites Formation

Decreased Effective Circulatory Volume


Hepatorenal Syndrome

Backward Theory Hepatorenal Syndrome

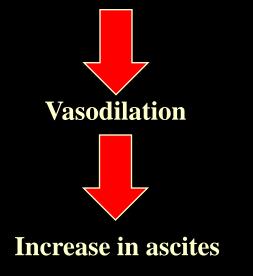
- Low urine sodium Low blood pressure Cardiac Output
- Systemic resistance

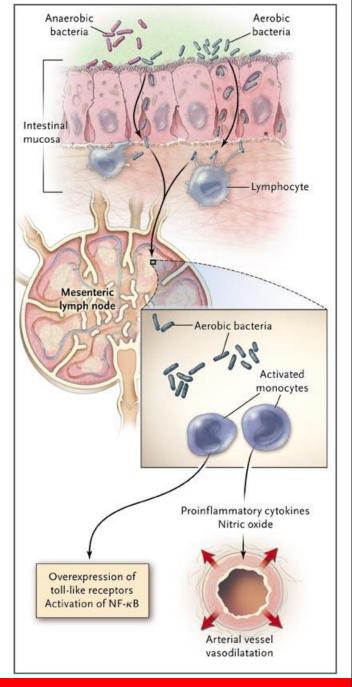
Yes	Yes
Yes	Yes
Decreased	Increased
Increased	Decreased
Increased	Decreased

Splanchnic Arterial Vasodilation

Increased vasodilatory substances (nitric oxide)

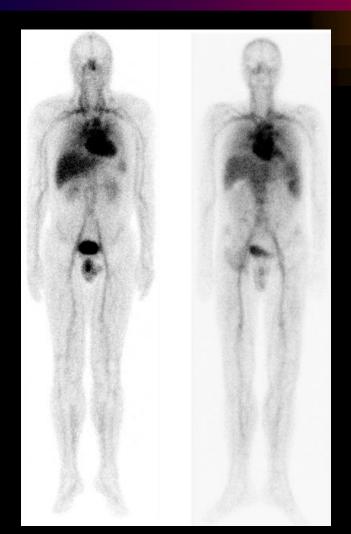
Intestinal Bacterial translocation


Mesenteric Vascular Hyporesponsivenss


Nitric Oxide in Cirrhosis

Role of bacterial translocation through permeable capillaries in the intestines

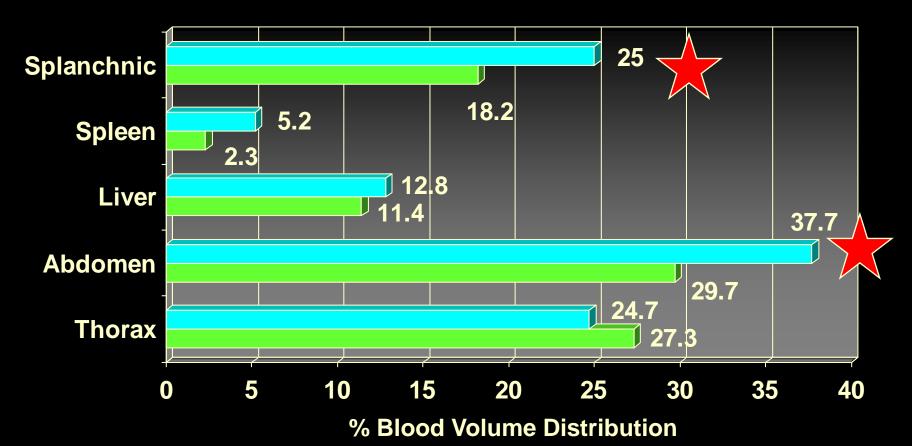
Migration to lymph nodes with increased cytokine release and local inflammatory response (PAMPs : pathogen-associated molecular patterns)


Gines P. N Engl J Med 361:1279, 2011

Hepatorenal Syndrome : Mediators of Vasodilation-Selective Splanchnic Vascular Hyporesponsiveness

- Glucagon
 - -Elevated levels in cirrhosis
 - Desensitizes mesenteric circulation to catecholamines and AII
 - Direct vasodilation
 - Increases cAMP leading to increased NO synthesis

Blood Volume Distribution


Normal

Cirrhosis (Splanchnic pooling)

Blood Volume Distribution in Cirrhosis

Normal Cirrhosis

Systemic Blood Flow and HRS

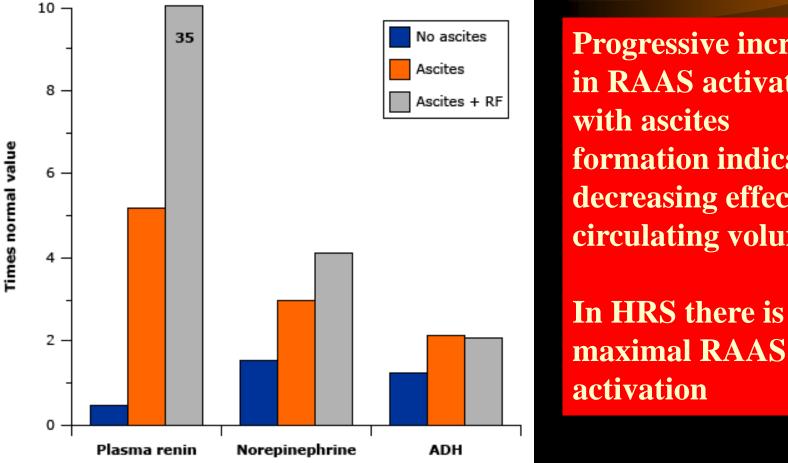
- Splanchnic arteriolar vasodilation <u>IS NOT</u> accompanied by peripheral vasodilation in all vascular beds
 - Cerebral / Femoral / Brachial / Hepatic
 beds all experience progressive
 vasoconstriction which is directly related to
 the GFR

Organ Perfusion in Cirrhosis and HRS

Splanchnic bed

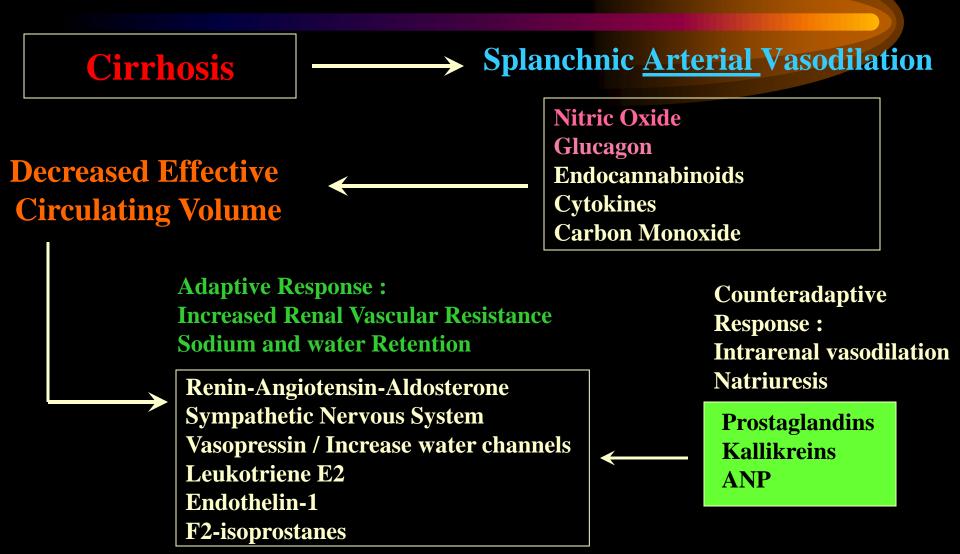
Total Peripheral vascular resistance DECREASES

ncreased

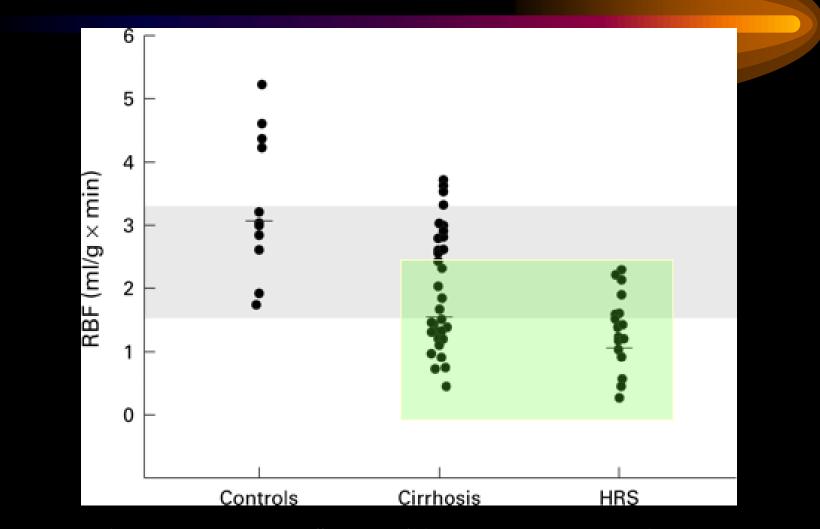

Renal blood flow

Cerebral blood flow

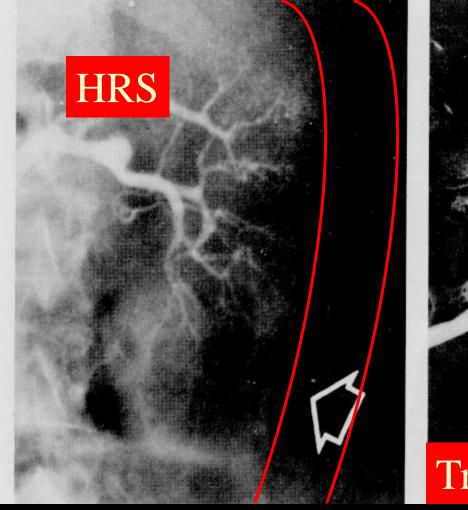
Coronary blood flow


Peripheral blood flow

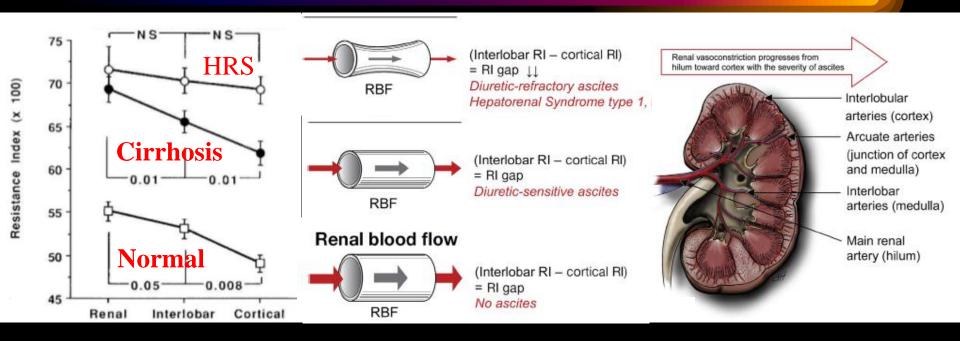
RAAS Activation in Cirrhosis ± HRS

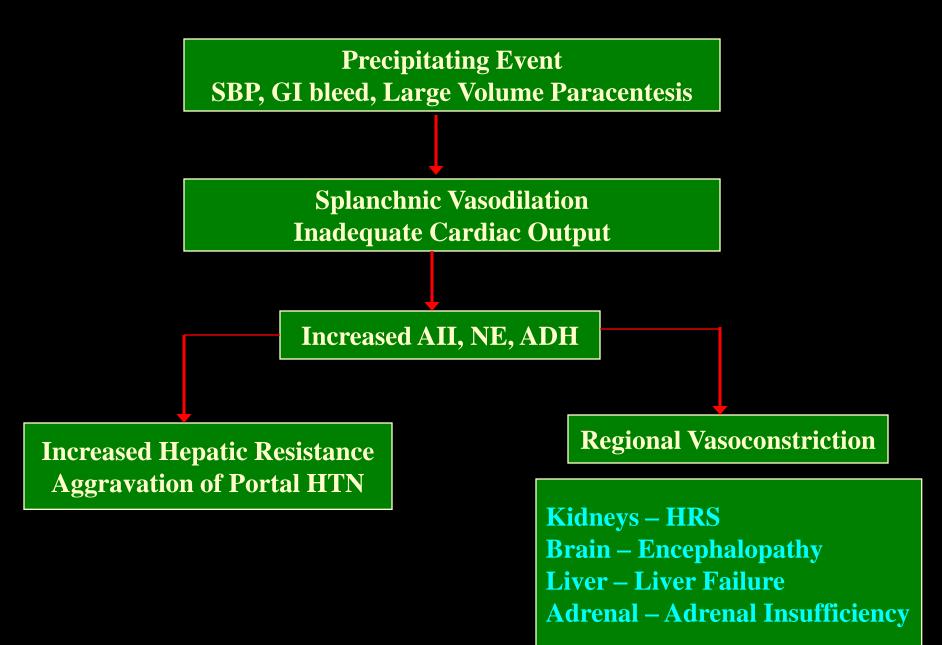


Progressive increase in RAAS activation with ascites formation indicating decreasing effective circulating volume

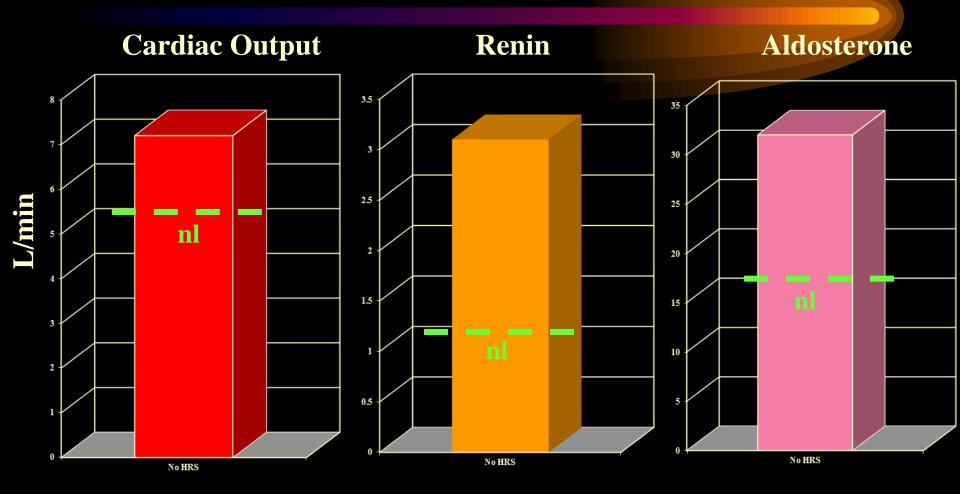

Hepatorenal Syndrome : Pathophysiology

Hepatorenal Syndrome

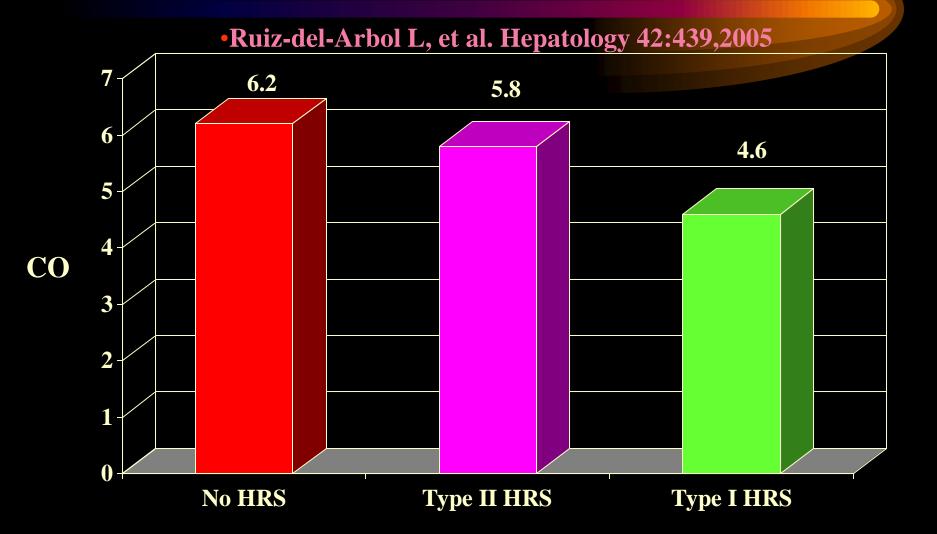

Ring-Larsen H, et al. Scand J Clin Lab Invest 37:635-42,1977



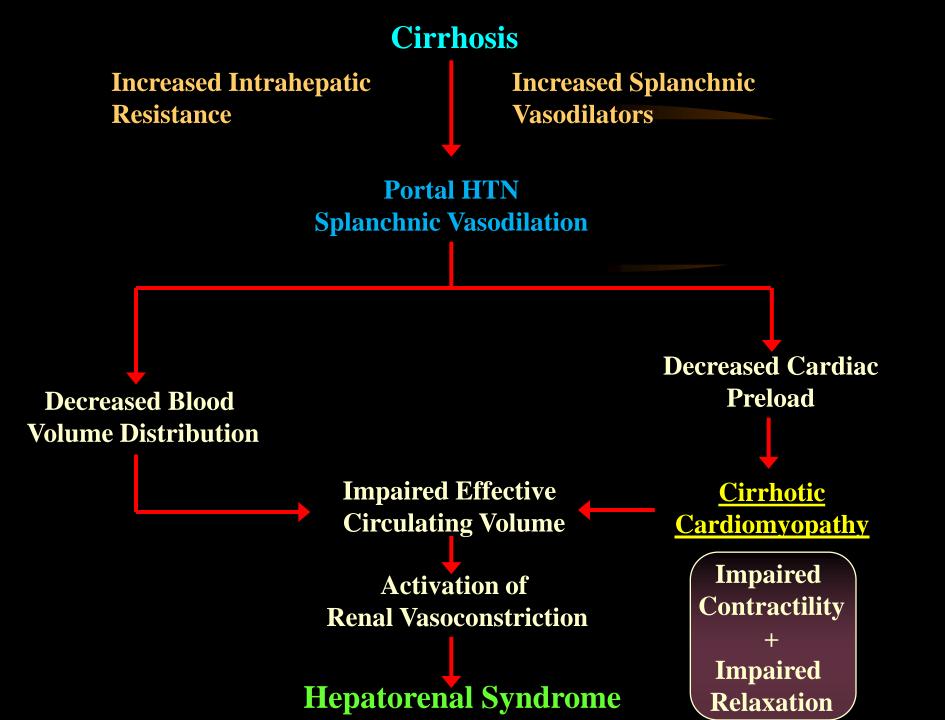
Severe vasoconstriction of the cortical vessels in the kidney in HRS which is completely reversible with therapy Confirms that the injury is one of vascular tone Mindikoglu A. Clin Gastroenterology and Hepatology 2017

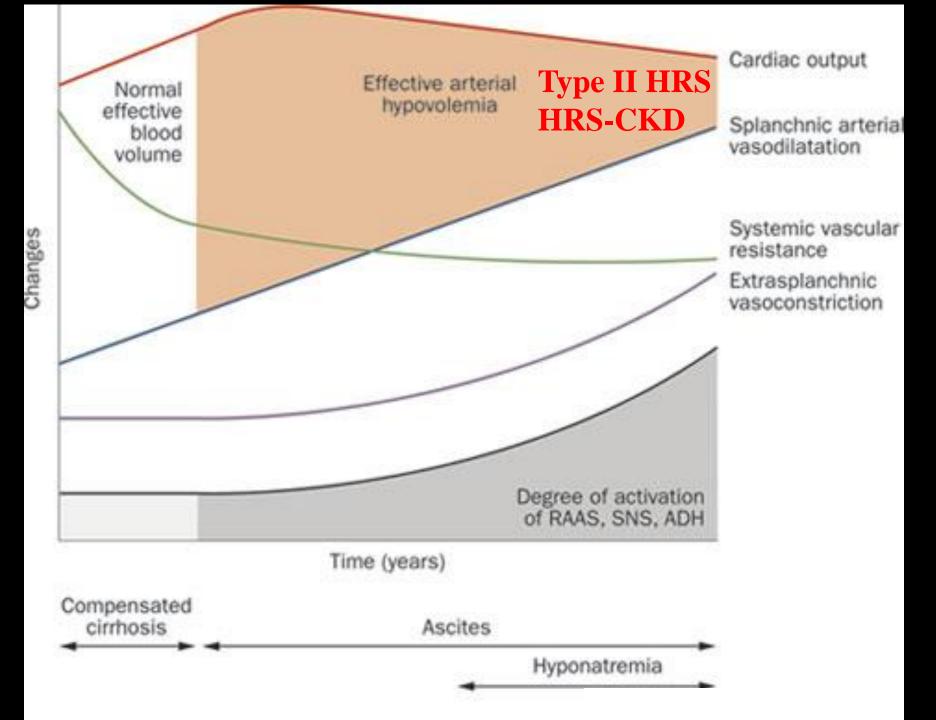

Doppler Ultrasound in HRS and Cirrhosis

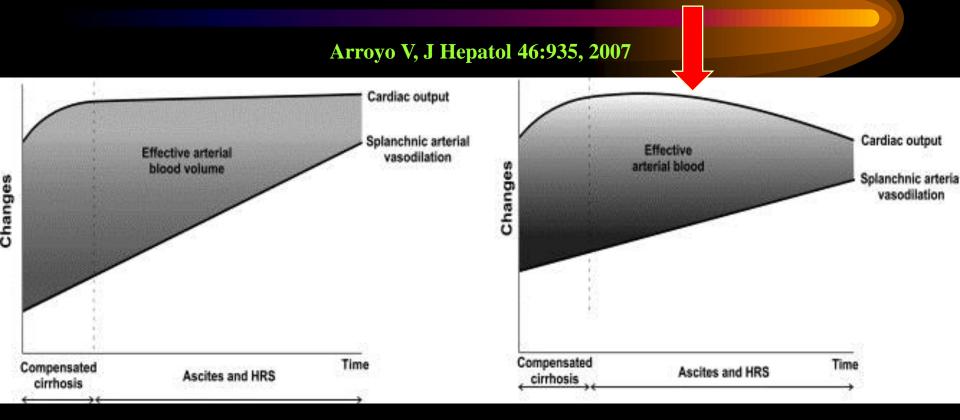
The resistive index is high throughout the renal vasculature in HRS to the same degree – (no RI gap !) In Cirrhosis alone the resistance is high in the larger vessels and not as pronounced in the smaller vessels that have a lower resistive index (RI gap)



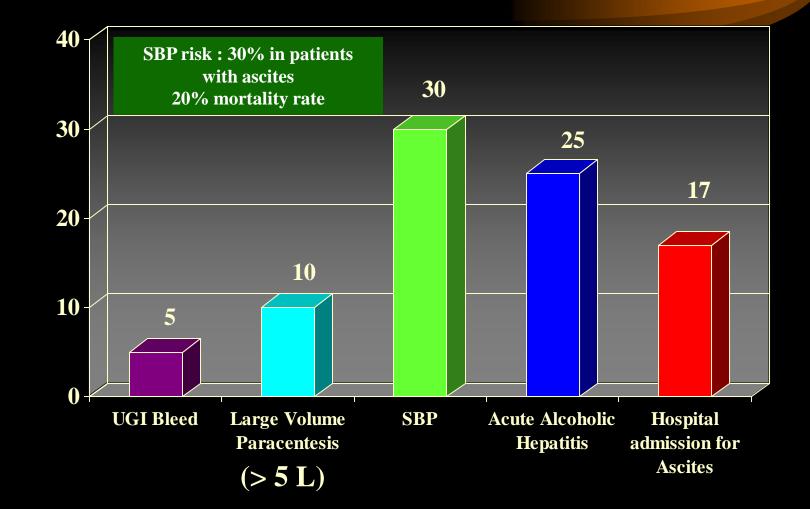
Circulatory Function and the Hepatorenal Syndrome


•Ruiz-del-Arbol L, et al. Hepatology 42:439,2005


Circulatory Function and the Hepatorenal Syndrome Differences Between Type I and Type II HRS


Hepato-Cardio-Renal Syndrome

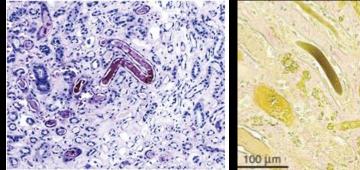
- Cirrhotic Cardiomyopathy
 Clinical Features
 - Blunted systolic and diastolic contractile response to stress
 - Ventricular hypertrophy / Dilation
 - Prolonged Q-T interval

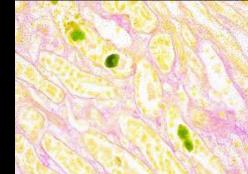

Pathogenesis of Type I HRS (HRS-AKI) Hepato – Cardio – Renal Syndrome

Peripheral Vasodilation Theory

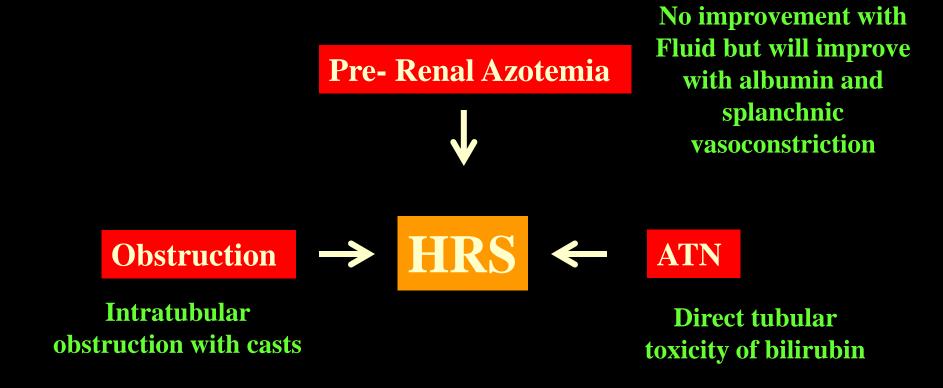
Peripheral Vasodilation + Cardiomyopathy Theory + acute decrease in volume

Risk for Developing Type I HRS The "Second Hit" Hypothesis

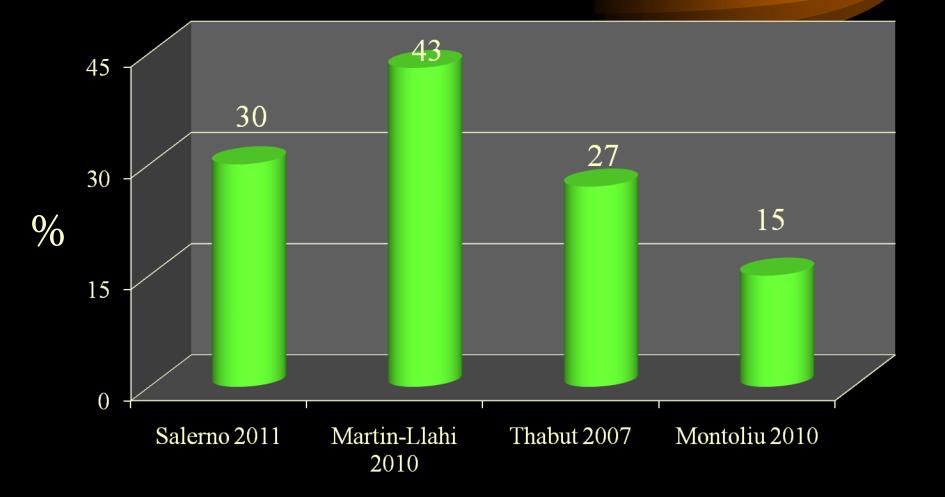

⁰∕₀


Circulatory Function and the Hepatorenal Syndrome

- Conclusions
 - Patients who develop HRS have
 - Lower baseline CO
 - Higher baseline levels of renin / Aldosterone / Catecholamines
 - Cardiac output decreases dramatically in Type I HRS resulting in a greater severity of renal hypoperfusion
- Etiology of "Cirrhotic cardiomyopathy"
 - Chronic high catecholamine levels
 - Left ventricular remodeling / fibrosis
 - Diastolic dysfunction


Bile Cast Nephropathy

- Reported in patients with <u>Direct</u> bilirubin levels > 6 mg/dl and <u>Total</u> bilirubin of 15 mg/dl
- Casts form primarily in the distal tubule but may be seen in the proximal tubule
- Direct tubular toxicity secondary to mitochondrial dysfunction from bile salts
- confirmed by two stains (Fouchet's stain and Perl's stain). Bile casts were considered positive according to green color on Fouchet's staining (Halls stain) and negative Perl's stain (Prussian blue)



AKI Classification of Hepatorenal Syndrome

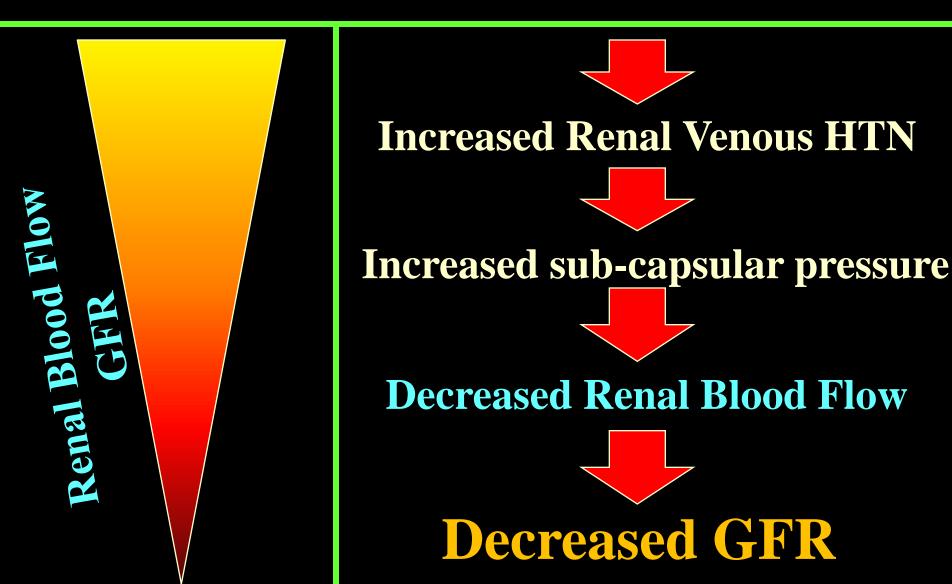
Prevalence of HRS as a Cause of AKI in Cirrhosis

Prakash J. Renal Fail 33:40,2011

Types of Kidney Disease seen in Cirrhosis

Kidney Diseases other than HRS in Patients with Cirrhosis

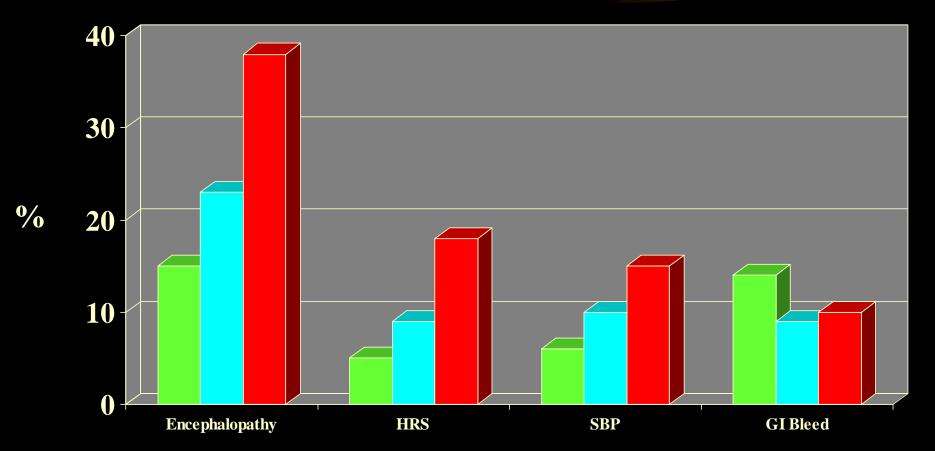
- Hepatitis C
 - Membranoproliferative glomerulonephritis
 - Membranous GN
 - Vasculitis
- Diabetes
 - Diabetic Nephropathy
- Hepatitis B
 - Membranous GN
 - IgA nephropathy
 - Vasculitis


In patients with AKI and cirrhosis it is essential to know the cause of liver failure as it may contribute to the differential diagnosis Do not forget !!! Abdominal Compartment Syndrome and Cirrhosis : AKI

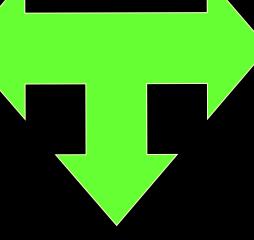
Normal Intra-abdominal pressure (IAP) 4 – 7 mmHG

Intra-abdominal hypertension (IAH) 12 – 20 mmHG

Intra-abdominal Compartment Syndrome (ICS) 12 – 20 mmHG


Abdominal Compartment Syndrome and Cirrhosis : AKI

Angeli P. Hepatology 44:1535, 2006


Hyponatremia in Cirrhosis and Ascites Risk of Complications at 1 Month Followup

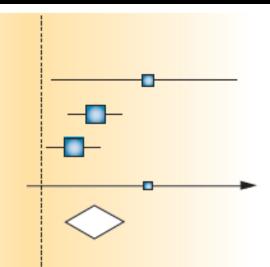
Hepatorenal Syndrome : Targets for Therapy

Antagonize <u>Inflammation /</u> <u>Bile Acids</u> Albumin infusion Ursodeoxycholic acid

Reduce Splanchnic Blood Flow TIPS **Increase Splanchnic Vasoconstriction** α-1 agonists **Midodrine** Noradrenaline Glucagon antagonism **Somatostatin** Octreotide V-1 agonists Vasopressin Terlipressin

Albumin

- <u>Non-Oncotic</u> Properties
 - Transport
 - Free radical scavenging
 - Sulfhydryl groups (thiols)
 - Bind reactive oxygen species
 - Superoxide hydroxyl
 - Peroxynitrite
 - Decreased Capillary permeability
 - Decrease neutrophil adhesion and activation
 - Anti-thrombotic and Anticoagulant effect


Hepatorenal Syndrome : Management Increase Splanchnic Vasoconstriction

- Terlipressin (non FDA approved)
 - Vasopressin analogue
 - Always combined with albumin infusion
 - Bolus infusion
 - Preferential vasoconstriction of the splanchnic vasculature (?)
 - Increases blood pressure and renal perfusion pressure
 - Decreases plasma renin, aldosterone, norepinephrine levels
 - Increases ANP levels

Terlipressin in HRS : Meta Analysis of Randomized Trials

Sagi S. J of Gastroenterol Hepatol 25:880, 2010

Resolution of hepatorenal syndrome	Relative risk (95% Cl)
Martin-Llahi, 2008	9.0 (1.24, 65.41)
Neri, 2008	4.20 (1.87, 9.44)
Sanyal, 2008	2.71 (1.24, 9.54)
Solanki, 2003	11.0 (0.67, 179.29)
Overall (95% CI)	3.76 (2.21, 6.29)

Reversal of Type I HRS – 46%

Terlipressin in HRS : Meta Analysis of Randomized Trials

• Sagi S. J of Gastroenterol Hepatol 25:880, 2010

Table 2	Side	effects	with	Terlipressin	requiring	discontinuation	of
therapy							

Side effect	Number of patients		
Myocardial infarction	2		
Chest pain	1		
Intestinal ischemia	3 7% serious		
Livedo reticularis	1 - Ischemic		
Peripheral ischemia	1 complication		
Severe hypertension	1		

One patient had both myocardial infarction and intestinal ischemia.

Hepatorenal Syndrome : Octreotide and Midodrine

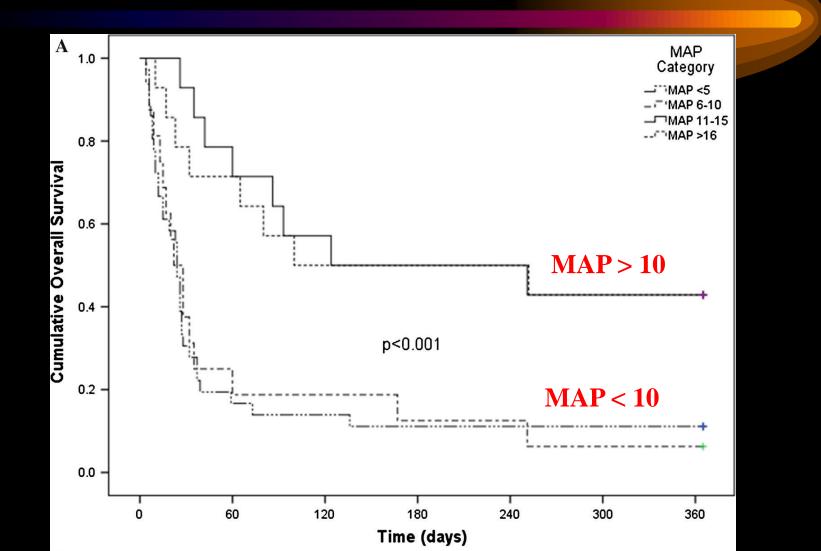
- Therapy
 - Target of treatment aimed at increasing mean arterial blood pressure by a minimum of 15 mmHg
 - Midodrine (α-1 agonist)
 - Oral administration
 - 7.5 mg T.I.D. with maximum of 12.5 mg T.I.D.
 - Octreotide (antagonist of glucagon)
 - 100 μg T.I.D. subcutaneously with maximum 200 μg T.I.D.
 - Albumin infused at 20 g/day and increased to a maximum of 40 g/day based on

• achieving a CVP > 12

Cavalin M.Hepatology Jan 16, 2015

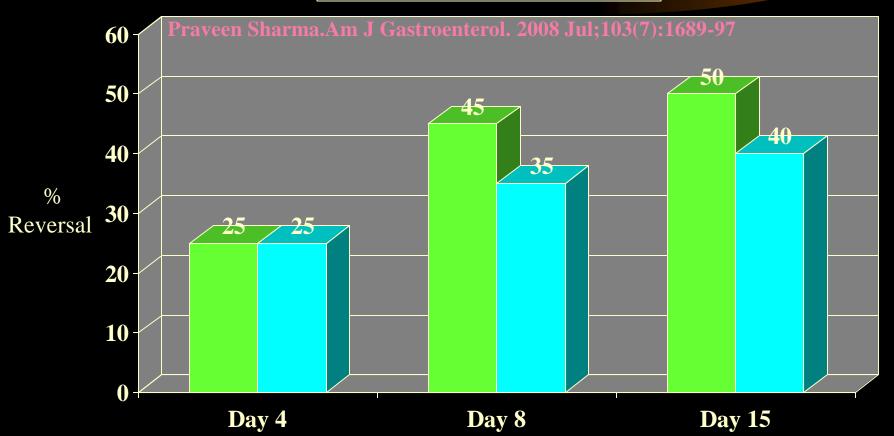
Terlipressin vs Midodrine Terlipressin Wins the Battle ! But

Because Midodrine did not achieve a rise in BP the failure of therapy may be related not to the drug combination but the lack of titration to the proper blood pressure endpoint

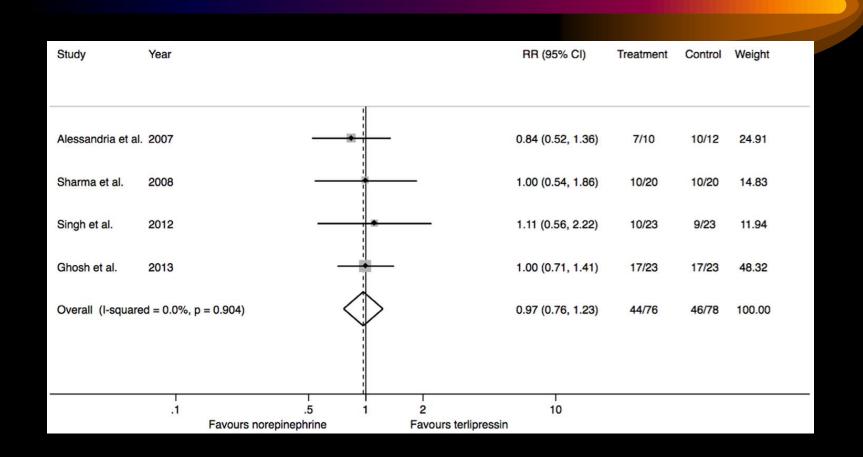

Vasocontrictor Therapy in HRS

Kiser T, et al. Neph Dial Transpl 20;1813, 2005

	Change MAP	
Responders	10 mmHg	
Non-Responders	6 mmHg	


Cai CX. Dig Dis Sci 2014 Dec 23

Increase in MAP > 10 Resulted in Improved Survival for HRS



Noradrenaline Versus Terlipressin in the Treatment of Type 1 Hepatorenal Syndrome

Noradrenaline **T**erlipressin

Terlipressin vs Norepinephrine It's a Tie !!!

Nassar J.PLoS One. 2014 Sep 9;9(9):e107466

Cochrane Database of Systematic Reviews

Terlipressin versus other vasoactive drugs for hepatorenal syndrome (Review)

Israelsen M, Krag A, Allegretti AS, Jovani M, Goldin AH, Winter RW, Gluud LL

Terlipressin compared to other vasoactive drugs for hepatorenal syndrome						
Patient or population: po Setting: hospital Intervention: terlipressin Comparison: other vaso		hepatorenal syndrome				
Outcomes	Anticipated absolute effects* (95% CI)		Relative effect (95% CI)	No of participants (studies)	Quality of the evidenc (GRADE)	
	Risk with other vasoac- tive drugs	Risk with terlipressin				
Mortality (All-cause)	Study population		RR 0.96 (0.88 to 1.06)	474 (10 randomised clinical trials*)	⊕⊜⊖⊖ Very low ^{a,b,c}	
	601 per 1000	577 per 1000 (529 to 637)				
Hepatorenal syndrome (Number of partici- pants who did not	Study population		RR 0.79 (0.63 to 0.99)	394 (9 randomised clinical trials)	⊕⊖⊖⊖ Very low ^{b,c,d}	
achieve reversal of hep- atorenal syndrome)	560 per 1000	442 per 1000 (353 to 554)				
Serious adverse events	Study population		RR 0.96 (0.88 to 1.06)	474 (10 randomised clinical trials)	⊕⊖⊖⊖ Very low ^{b,c,d}	

No benefit of terlipressin compared to other vasoconstrictors

Israelsen M, Terlipressin versus other vasoactive drugs for hepatorenal syndrome.Cochrane Database of Systematic Reviews 2017, Issue 9.

Reversal of HRS Syndrome and Lack of Improvement of Mortality

Table 3. Meta-Analyses of Randomized Controlled Trials of Vasoactive Drugs for Reduction of Mortality						
Meta-analysis studies	Studies, n	Drug combinations	OR or RR for all-cause mortality or survival (95% CI)	Heterogeneity,	Test for overall effect, <i>P</i> value	Studies included in the meta-analysis
Fabrizi et al ⁹⁶ (2009)	5	Terlipressin vs placebo	OR, 2.06 (0.94-4.54)"	55%	.07	Hadengue et al ¹⁰⁵ (1998), Solanki et al ¹¹² (2003), Sanyal et al ¹⁰⁹ (2008), Martin-Liahi et al ¹⁰⁷ (2008), Neri et al ¹⁰⁹ (2008)
Gluud et al ^{se} (2010)	6	Vasoconstrictor drug alone or with albumin vs no intervention or albumin	RR, 0.82 (0.70-0.96)	0	Not reported	Yang et al ¹¹⁹ (2001), Solanki et al ¹¹² (2003), Pomier-Layrargues et al ¹²⁰ (2003), Sanyal et al ¹⁰⁹ (2008), Martin-Liahi et al ¹⁰⁷ (2008), Neri et al ¹⁰⁰ (2008)
	Not reported	Terlipressin alone or with abumin vs no intervention or albumin	RR, 0.80 (0.66-0.97)	Not reported	Not reported	Not reported
	Not reported	Terlipressin + albumin vs albumin	RR, 0.81 (0.68-0.97)	Not reported	Not reported	Not reported
	Not reported	Terlipressin vs no intervention	RR, 0.13 (0.01-2.10)	Not reported	Not reported	Not reported
	Not reported	Octreotide + albumin vs albumin	RR, 0.86 (0.58-1.30)	Not reported	Not reported	Not reported
Sagi et al ¹⁰² (2010)	3	Terlipressin vs control/placebo	RR, 1.85 (1.00-3.41)*	0%	.05	Sanyal et al ¹⁰⁹ (2008), Martin-Llahi et al ¹⁰⁷ (2008), Neri et al ¹⁰⁸ (2008)
Gluud et al ¹⁰⁰ (2012)	5	Terlipressin alone or with albumin vs no intervention or albumin	RR, 0.75 (0.59-0.97)	39%	.028	Yang et al ¹¹⁹ (2001), Solanki et al ¹¹² (2003), Sanyal et al ¹⁰⁹ (2008), Martin-Liahi et al ¹⁰⁷ (2008), Neri et al ¹⁰⁰ (2008)
Mattos et al ¹⁰¹ (2016)	4	Terlipressin vs noradrenaline	RR, 1.04 (0.84-1.30)"	0%	.70	Alessandria et al ¹⁰³ (2007), Sharma et al ¹¹⁰ (2008), Singh et al ¹¹¹ (2012), Ghosh et al ¹⁰⁵ (2013)
Gifford et al ^{on} (2017)	4	Terlipressin ± alburnin vs no intervention/placebo ± alburnin	RR, 0.79 (0.63-1.01)	53%	.06	Solanki et al ¹¹² (2003), Sanyal et al ¹⁰⁹ (2008), Neri et al ¹⁰⁹ (2008), Boyer et al ¹¹⁷ (2016)
	1	Terlipressin infusion vs terlipressin bolus	RR, 1.58 (0.86-2.91)	Not applicable	.14	Cavalin et al ²² (2016)
	3	Terlipressin vs noradrenaline	RR, 1.04 (0.74-1.47)	0%	.81	Alessandria et al ¹⁰⁰ (2007), Sharma et al ¹¹⁰ (2008), Singh et al ¹¹¹ (2012)
	2	Terlipressin + albumin vs dopamine + standard care	RR, 0.98 (0.76-1.26)	0%	.87	Silawat et al ¹¹⁴ (2011), Srivastava et al ¹²¹ (2015)
	1	Noradrenaline + albumin vs octreotide + midodrine + albumin	RR, 1.50 (0.60-3.78)	Not applicable	.39	Tavakkoli et al ¹¹³ (2012)
Facciorusso et al ⁹⁷ (2017)	6	Terlipressin vs placebo	OR, 0.65 (0.41-1.05)	20%	80.	Solanki et al ¹¹² (2003), Sanyal et al ¹⁰⁹ (2008), Martin-Llahi et al ¹⁰⁷ (2008), Neri et al ¹⁰⁸ (2008), Zafar et al ¹¹⁶ (2012), Boyer et al ¹¹⁷ (2016)
	4	Terlipressin vs noradrenaline	OR, 1.02 (0.46-2.28)	0%	.95	Alessandria et al ¹⁰⁰ (2007), Sharma et al ¹¹⁰ (2008), Singh et al ¹¹¹ (2012), Indrabi et al ¹¹⁵ (2013)
	1	Terlipressin vs dopamine + furosemide	OR, 1.00 (0.18-5.67)	Not applicable	1.00	Srivastava et al ¹²¹ (2015)
	1	Terlipressin vs octreotide + midodrine	OR, 0.90 (0.27-3.05)	Not applicable	.87	Cavalin et al ¹⁰⁴ (2015)
	1	Noradrenaline vs octreotide + midodrine		Not applicable	.40	Tavakkoli et al ¹¹⁰ (2012)

No improvement in mortality compared to other vasoconstricting therapy

Terlipressin and the FDA

Approved in 40 countries for the treatment of HRS

-Not approved in Canada or the U.S.

- U.S. Trials ongoing
 - Mallinckrodt : Type 1 HRS currently in Phase 3 trials
 - BioVie Inc : Ascites
 - No current drugs have been approved for the treatment of ascites
 - Phase 2 Trials : Orphan Drug Designation
 - Fast Track Application

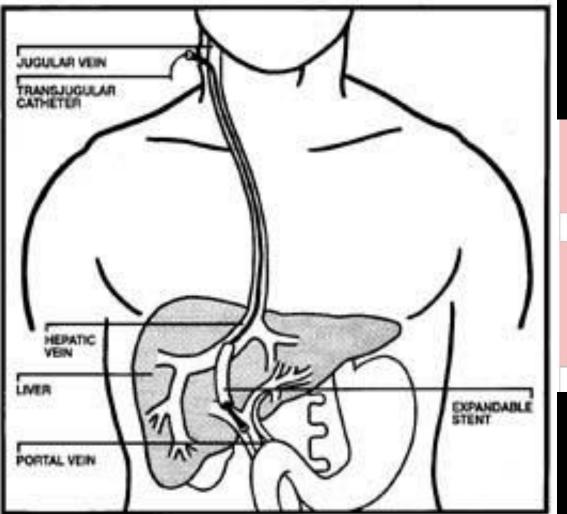
HRS : Current Treatment Recommendations

- Administer one of the following vasoconsticting regimens
 - Norepinephrine (0.5 3.0 mg/hr IV)
 - Midodrine (7.5 12.5 mg p.o. T.I.D.) + Octreotide (100 200 μg SQ T.I.D.)
 - Terlipressin (0.5 2.0 mg IV q 4 12 hours)
- Concomitant administration of
 - Albumin (1 g/kg IV on day 1 followed by 20 40 g/day)
- Duration of therapy maximum 2 weeks
- Target increase in MAP by 10 mmHg
- CVP > 10 cmH2O
- Endpoint = reduction of creatinine < 1.5 mg/dl

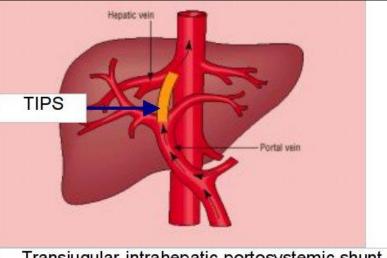
Contraindications to Vasoconstrictor Use in HRS

- Active CAD
- Cardiomyopathy
- Cardiac Arrhythmias
- Cerebrovascular disease
- PVOD
- Severe HTN

Treatment of Refractory Ascites

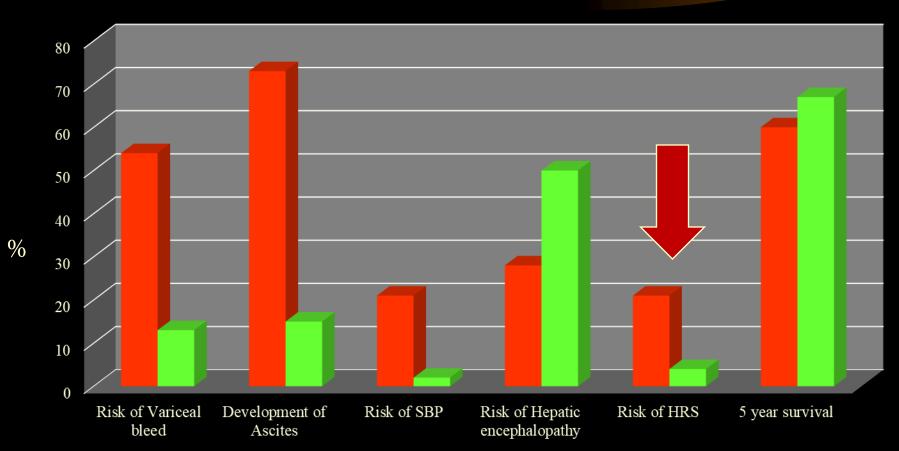

No response to 400 mg/day Spironolactone . 160 mg /day of Furosemide

Large Volume Paracentesis


TIPS – **Transjugular Portosystemic Shunt**

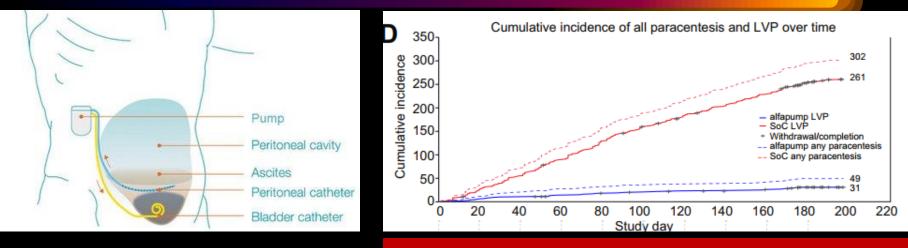
Transjugular Intrahepatic Portosytemic Shunt TIPS Placement

Reduces Portal Pressure



Transjugular intrahepatic portosystemic shunt

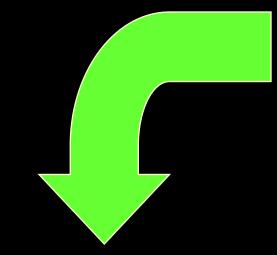
Castells A, Hepatology. 1994;20(3):584


Prevention of HRS by Placement of TIPS

■ No TIPS ■ TIPS

Bureau C. Journal of Hepatology 2017 vol. 67 j 940–949

Alfa Pump for Refractory Ascites (<u>Automated Low-Flow Ascites Pump</u>)

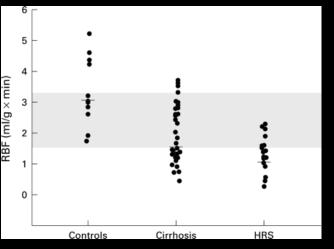


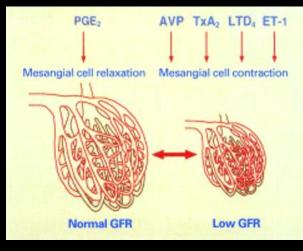
Efficacy currently limited by risk of infection

fully implantable, programmable, and rechargeable pump system that automatically diverts ascitic fluid from the peritoneal cavity to the urinary bladder, allowing fluid removal by micturition

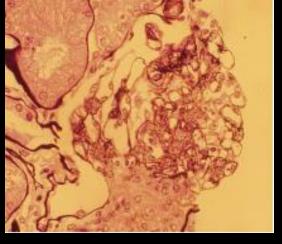
Mean duration of implant procedure was $65.0 \pm 20.6 \text{ min}$ (min. 30, max. 130), all were performed under general anesthesia (12 laparoscopically [44.4%], 15 open [55.6%]).

Liver Transplantation in HRS


Liver TP Alone

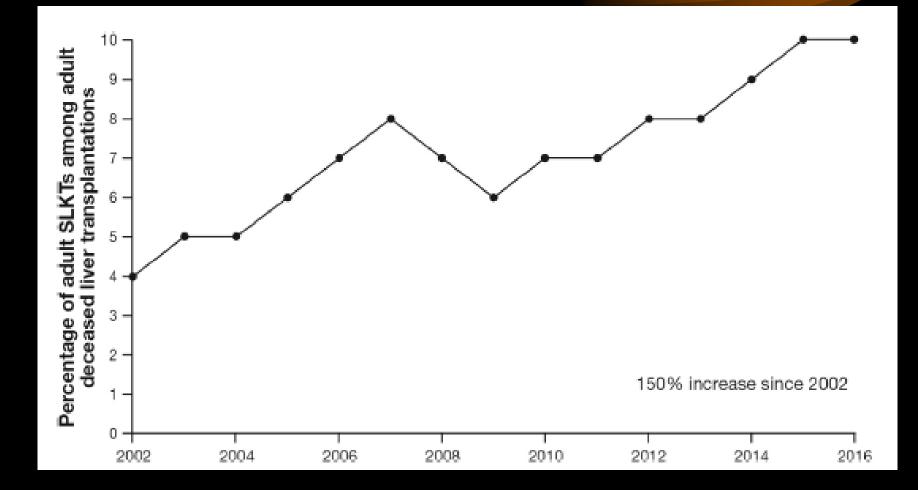

Liver / Kidney TP

HRS Diagnosis

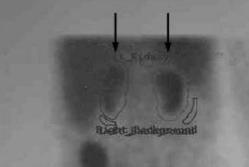

- From a Nephrologic Perspective
 - Prolonged ischemic and vasoconstriction will lead to upregulation of cytokines that lead to progressive sclerosis
 - The duration of time required for these irreversible events is not measurable or defined

Decreased renal blood flow

Mesangial contraction



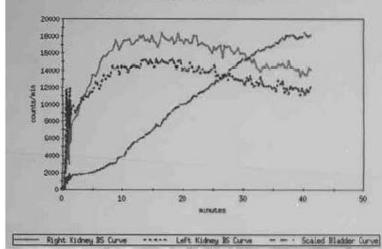
Hepatic Glomerulosclerosis


MELD Score

- Point criteria for determining the allocation of liver TP
- MELD = <u>Medical Evaluation of Liver Disease</u>
 - -Major factors
 - INR
 - Bilirubin
 - Creatinine

Marked Increase in the Number of Simultaneous Liver/Kidney Transplants since the Inception of the MELD Score

What We Want to Avoid !



Dec 98 NAL nal_results ncSum1

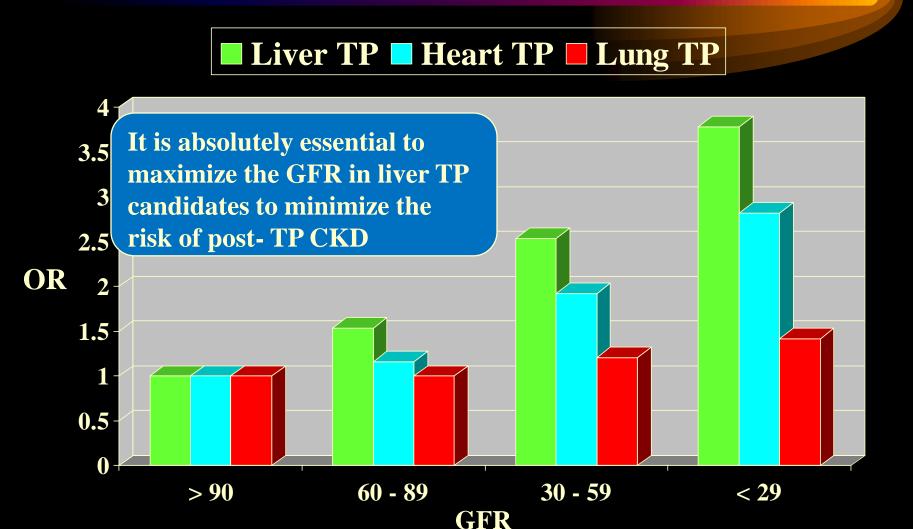
2-3 Minute Summed Image

Background Subtracted Kidney Curves

31 Dae 98 BENAL renal_results P2Reframe 40

Biadder Image

No Post-void Image


Patient Information

Height (cm)	
Weight (kg)	
Age (years)	
Isotope	
Dose injected (mCi)	4.70
Transplant	NO
No Lasix	

Function Results

	Left	Right
Uptake (%) (2-3 min)	51.3	48.7
TTP (min)	18.17	16.50
Peak Count Rate (counts/min)	15280.1	18417.0
T 1/2 from peak	NONE	NONE
(min) Right Kidney : Bladder peak ratio		0.26

Risk of CKD is Dependent on Pre-TP Renal Function in Non-Renal TP Patients

Transplantation in HRS : Liver or Combined Liver-Kidney

- Key concepts
 - HRS is not an indication for combined liver -kidney transplant
 - HRS will recover in 80% of patients posttransplant
 - Kidney TP should be given only to patients with
 - ESRD : Dialysis > 3 months
 - CKD (3 months) with a GFR < 30 cc/min
 - These patients will likely require dialysis within 3 years after transplantation with CNI exposure
 - AKI
 - Dialysis > 6 weeks
 - GFR < 25 cc/min > 6 weeks
 - Pre-transplant renal function directly affects liver TP survival
 - All efforts to treat HRS and improve renal function before transplantation are important

Hepatorenal Syndrome : Transplantation One or Two Organs ?

- By definition
 - Hepatorenal syndrome is a reversible phenomena of <u>functional nature</u> rather than structural damage
 - Patients meeting the strict criteria for this syndrome should be transplanted with a <u>liver TP only</u>
 - Kidney TP if Stage 4 CKD or dialysis dependent for > 6 weeks
- Management concern
 - Risk of calcineurin nephrotoxicity in a kidney that has been under prolonged ischemia
 - Difficulty of obtaining a renal biopsy due to the coagulopathy of liver failure

Hepato(cardio)renal Syndrome

- A unique constellation of hemodynamic events associated with advanced liver failure resulting in a <u>form of vasomotor nephropathy</u>
 - Must be distinguished from ATN, pre-renal azotemia and coincident involvement of the kidneys and the liver by specific disease states
- Primary splanchnic arteriolar vasodilation appears to be the main pathogenesis

Hepatorenal Syndrome

- HRS rarely develops spontaneously but often accompanies acute iatrogenic changes in intravascular volume
- Treatment with TIPS, Octreotide + Midodrine, Noradrenaline, Vasopressin analogues (with albuminwhen approved!) and/or liver transplantation has been successfully employed in HRS
- HRS has a major adverse long term impact on patient survival and precautions must be initiated to avoid this syndrome

Thank you !

University of Miami #1

