Continuous Glucose Monitoring and

Insulin Delivery Devices

Jay S. Skyler, MD, MACP

Diabetes Research Institute University of Miami Miller School of Medicine

Disclosures

Dualities of Interest:

Jay Skyler has acted as an advisor to Adocia, Applied Therapeutics, Astra-Zeneca, Boehringer-Ingelheim, DalCor, Dance Biopharm, Diavacs, Duologics, Elcelyx, Eli Lilly, Esperion, Geneuro, Ideal Life, Immunomolecular Therapeutics, Intarcia, Intrexon/ActoBio, Kamada, Merck, Orgenesis, Sanofi, Servier, Tolerion, vTv, Valeritas, Viacyte, and Zafgen.

He has research funding from NIH, JDRF, and DRIF.

He chairs the Strategic Advisory Board of the EU INNODIA consortium.

He is a member of the board of directors of Dexcom, Intarcia, and Moerae Matrix. He previously was on the board of directors of MiniMed.

Insulin Delivery Devices

Continuous Subcutaneous Insulin Infusion (CSII)

Continuous Subcutaneous Insulin Infusion (CSII)

Current Insulin Delivery Systems

10:20 AM ð B Y March 5, 2017 ◀ 400 190 ₹ 350 mg/dL ₹ 300 ₹250 ~ ₹200 ₹150 12 **∢**100 HRS ◀ 50 INSULIN ON BOARD: 1.1 u | 1:09 hrs OPTIONS **BOLUS**

Companion inPen

Mean HbA1c by Age & Insulin Delivery Method

	1.5 to 5 yrs.	6 to 10 yrs.	11 to 15 yrs.	16 to 19 yrs.
Injection therapy				
Glycated hemoglobin, %	7.36	7.52	8.18	8.48
(95% CI)	(7.13-7.59)	(7.45-7.59)	(8.14-8.23)	(8.44-8.53)
Pump therapy				
Glycated hemoglobin, %	7.38	7.40	8.02	8.29
(95% CI)	(7.15-7.60)	(7.32-7.47)	(7.97-8.07)	(8.25-8.33)
Between-group difference	0.02	-0.12	-0.16	-0.19
(95% CI)	(-0.30 to 0.34)	(-0.22 to -0.03)	(-0.23 to -0.10)	(-0.25 to -0.13)
P value	.91	.02	< .001	< .001

Severe Hypoglycemia & DKA by Insulin Delivery Method

Karges et al. JAMA 2017;318:1358-1366

Continuous Glucose Monitoring

Implantable Glucose Sensor

Continuous Glucose Monitoring System (CGMS)

Guardian Telemetered Glucose Monitoring System

DexCom Seven Plus Continuous Glucose Monitor

CGM Sensors Circa 2008

Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes

The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group

New England Journal of Medicine 2008: 359: 1464-1476

JDRF RT-CGM Randomized Controlled Trial

Subjects

- n = 322
- 3 cohorts by age: 8-14, 14-24, > 25 yrs old
- A1c 7.0% 10.0%
- CSII (79.5%) or MDI (20.5%)
- SMBG mean 6.4 tests per day

Treatment Groups

- Real-time CGM + SMBG group
 - Abbott, DexCom or Medtronic RT Sensors
- SMBG control group

New Engl J Med 2008: 359: 1464-1476

Cohort Starting with A1c 7.0-10.0% Changes in A1c in <u>></u>25 yr olds

Change in A1c from Baseline to 26 Weeks in ≥7.0% HbA1c Cohort

New Engl J Med 2008: 359: 1464-1476

Change in A1C by Sensor Use

Diabetes Care. 2009;32:1947-5193.

Dexcom G6

- 10 day wear
- No calibrations
- iOs and Android compatible for smartphones and smart watches
- System contains:
 - G6 app
 - G6 transmitter
 - G6 receiver
 - G6 sensors (3 pack)
- Patients age 2 and above

"Followers" May Take Advantage of Remote Monitoring

Apple Watch Display

Dexcom G6 Mobile. If you have type 1 or type 2 diabetes, you can now test your glucose levels at a glance.

Medtronic Guardian Connect

- 7 day wear
- Calibrate >2 times daily
- System contains:
 - Guardian sensor 3
 - Rechargable transmitter
 - Guardian connect to CareLink
 - Sugar IQ App
- For patients ages 14-75

Eversense Implantable CGM System

Sensor Fully implanted Small size Up to 90 days

Smart Transmitter

On-body vibe alerts Removable/Rechargeable Gentle adhesive

Mobile App

Real-time readings every 5 mins Trends, alerts w/ predictive alerts

Eversense Implantable CGM System

Sensor Powered by Transmitter

Fluorescence with Glucose Binding

Eversense Implantable CGM System

11

Libre Flash Glucose Monitoring

- 14 day wear
- No calibration
- No alarms
- Records data q 15 min (8hr)
- Don't rely on readings for first 12 hours
- "Scan" to see glucose levels
 - 8-hour look-back with graph

Flash Glucose Monitoring vs Continuous Glucose Monitoring

Feature	FGM	CGM
Alarms	-	+
Duration	10-14 days	7-10 days
Calibration	-	 + ≥2 times daily (Guardian) + 2 times daily (Eversense) + (G6 optional)
Data Transfer	Requires "scan"	Passive

Operator's Manual

IMPORTANT: The device may inaccurately indicate hypoglycemia. The results of the clinical study conducted for this device showed that 40% of the time when the device indicated that user sensor glucose values were at or below 60 mg/dL, user glucose values were actually in the range of 81-160 mg/dL. Therefore, interpretation of the Free Style Libre Pro Flash Glucose Monitoring System readings should only be based on the trends and patterns analyzed through time using the reports available per the intended use.

Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections The DIAMOND Randomized Clinical Trial

Roy W. Beck, MD, PhD; Tonya Riddlesworth, PhD; Katrina Ruedy, MSPH; Andrew Ahmann, MD; Richard Bergenstal, MD; Stacie Haller, RD, LD, CDE; Craig Kollman, PhD; Davida Kruger, MSN, APN-BC; Janet B. McGill, MD; William Polonsky, PhD; Elena Toschi, MD; Howard Wolpert, MD; David Price, MD; for the DIAMOND Study Group

JAMA 2017; 317:371-378

DIaMonD Study Design – Phase 1: The First RCT Specifically Looking at the Clinical Efficacy of MDI + CGM

A1c Differences – CMG vs SMBG The DIaMonD Randomized Controlled Trial

	Week 4	Week 12	Week 24	
	Visit	Visit	Visit	
	(N=105)	(N=103)	(N=102)	
Mean CGM usage, days/week	6.9	6.8	6.7	
0 days/week	0%	1%	2%	
≥6 days/week	94%	96%	89%	
Mean % of CGM readings captured	95%	93%	90%	

All data reflect the 28 days prior to each visit.

At 6 Months, 52% of Subjects Reaching Goal A1c or Reduced A1c by 1%

A1c Reduction with MDI Subjects Did Not Differ Among Adult age groups

Time-in-Range 70-180 mg/dL Increased

Hypoglycemia Decreased Across All Low Levels

Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections The GOLD Randomized Clinical Trial

Marcus Lind, MD, PhD; William Polonsky, PhD; Irl B. Hirsch, MD; Tim Heise, MD; Jan Bolinder, MD, PhD; Sofia Dahlqvist; Erik Schwarz, MD, PhD; Arndís Finna Ólafsdóttir, RN; Anders Frid, MD, PhD; Hans Wedel, PhD; Elsa Ahlén, MD; Thomas Nyström, MD, PhD; Jarl Hellman, MD

JAMA 2017; 317:379-387

CGM vs SMBG for Glycemic Control in Adults with T1D on MDI -The GOLD Randomized Clinical Trial

Lind et al. JAMA. 2017;317:379-387.

Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving Multiple Daily Insulin Injections A Randomized Trial

Roy W. Beck, MD, PhD; Tonya D. Riddlesworth, PhD; Katrina Ruedy, MSPH; Andrew Ahmann, MD; Stacie Haller, RD, LD, CDE; Davida Kruger, MSN, APN-BC; Janet B. McGill, MD; William Polonsky, PhD; David Price, MD; Stephen Aronoff, MD; Ronnie Aronson, MD; Elena Toschi, MD; Craig Kollman, PhD; and Richard Bergenstal, MD; for the DIAMOND Study Group*

Annals of Internal Medicine 2017; 167:365-374

DlaMonD T2D Study: HbA1c Treatment Group Differences

Bergenstal et al Ann Int Med 2017; 167:365-374

< 7

Glucose Monitoring in Type 2 Diabetes

All Trials

		CGM Usual care				Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.1.2 RT-CGM and P-	CGM								
Allen 2008	-1.16	1.04	21	-0.32	1.02	25	3.5%	-0.80 [-1.41, -0.20]	
Yoo 2008	-1.1	1.56	29	-0.4	1.3	28	4.6%	-0.48 [-1.01, 0.05]	
Ehrhardt 2011	-1	1.64	50	-0.5	1.63	50	8.2%	-0.30 [-0.70, 0.09]	
Beck 2017	-0.8	0.92	77	-0.5	1.14	75	12.4%	-0.29 [-0.61, 0.03]	
Cosson 2009	-0.63	1.44	11	-0.31	1.55	14	2.0%	-0.21 [-1.00, 0.59]	
Kim 2014	-0.6	1.86	65	-0.2	2.26	301	17.6%	-0.18 [-0.45, 0.09]	
Kesavadev 2017	-0.5	1.66	296	-0.3	1.56	296	48.9%	-0.12 [-0.29, 0.04]	-84
Sato 2016	0	1.77	17	-0.3	1.2	17	2.8%	0.19 [-0.48, 0.87]	
Subtotal (95% CI)			566			806	100.0%	-0.20 [-0.31, -0.09]	•
Heterogeneity: Chi ² =	7.63, df	= 7 (P =	: 0.37);	l² = 8%					
Test for overall effect:	Z = 3.51	(P = 0.	0004)						
1.1.3 FGM									
Anjana 2017	-0.9	11.17	2339	-0.7	8.69	2339	95.9%	-0.02 [-0.08, 0.04]	
Haak 2017	-0.28	1.3	149	-0.41	1.5	75	4.1%	0.09 [-0.18, 0.37]	
Subtotal (95% CI)			2488			2414	100.0%	-0.02 [-0.07, 0.04]	•
Heterogeneity: Chi ² = 0.63, df = 1 (P = 0.43); I ² = 0%									
Test for overall effect:	Z = 0.53	(P = 0.	59)						
									Favours CGM Favours usual care
Test for subaroup dif	ferences	: Chi ² =	8.44. c	if = 1 (P	= 0.00	$ 4\rangle, ^2 =$	88.1%		

Park & Le. Diabetes Technology & Therapeutics 2018;20:613-621

Glucose Monitoring in Type 2 Diabetes

RCTs Only

	(CGM		Usual care				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.2.2 RT-CGM and P-	CGM								
Allen 2008	-1.16	1.04	21	-0.32	1.02	25	10.4%	-0.80 [-1.41, -0.20]	
Yoo 2008	-1.1	1.56	29	-0.4	1.3	28	13.7%	-0.48 [-1.01, 0.05]	
Ehrhardt 2011	-1	1.64	50	-0.5	1.63	50	24.4%	-0.30 [-0.70, 0.09]	
Beck 2017	-0.8	0.92	77	-0.5	1.14	75	37.2%	-0.29 [-0.61, 0.03]	
Cosson 2009	-0.63	1.44	11	-0.31	1.55	14	6.1%	-0.21 [-1.00, 0.59]	
Sato 2016	0	1.77	17	-0.3	1.2	17	8.4%	0.19 [-0.48, 0.87]	
Subtotal (95% CI)			205			209	100.0%	-0.33 [-0.52, -0.13]	•
Heterogeneity: Chi ² =	5.15, df	= 5 (P	= 0.40)); I ² = 3%	6				
Test for overall effect:	Z = 3.28	8 (P = 0	0.001)						
1.2.3 FGM									
Haak 2017	-0.28	1.3	149	-0.41	1.5	75	100.0%	0.09 [-0.18, 0.37]	
Subtotal (95% CI)			149			75	100.0%	0.09 [-0.18, 0.37]	
Heterogeneity: Not ap	oplicable	1							
Test for overall effect:	Z = 0.67	' (P = ().50)						
									-1 -0.5 0 0.5 1
									Favours CGM Favours usual care

Test for subgroup differences: Chi² = 5.92, df = 1 (P = 0.02), l² = 83.1%

Park & Le. Diabetes Technology & Therapeutics 2018;20:613-621

A1c and Hypoglycemia Risk

DCCT: Absolute Risk of Severe Hypoglycemia by Mean A1c

Two Eras of Diabetes Management

Impact of Continuous Glucose Monitoring on Rate of Severe Hypoglycemia Compared to DCCT

Type 1 Diabetes Exchange

A1c by Age and Time Period

Proportion of Participants Achieving Target A1c of <7%

Only A Small Percentage of T1D Patients Achieve Target A1c Levels

A1c by Age

A1c by Insulin Delivery Method and CGM Use

% Meeting A1c ADA Target by Insulin Delivery Method & CGM Use

Proportion of Participants Overweight/Obese

CGM Use in Type 1 Diabetes Exchange

Severe Hypoglycemia in Type 1 Diabetes by A1c

Risk of Severe Hypoglycemia Is Not Associated With A1c

A1c

Occurrence of Severe Hypoglycemia by Age

Occurrence of Severe Hypoglycemia by Diabetes Duration

Occurrence of Severe Hypoglycemia by Pump Use Status

Occurrence of DKA by Age

Frequency of Diabetic Ketoacidosis According to Age

Age (years)
Occurrence of DKA by Diabetes Duration

Occurrence of DKA by A1c

A1c

Occurrence of DKA by CGM Use Status

Occurrence of DKA by Pump Use Status

T1D Exchange 2018 Update - Unpublished

Severe Hypoglycemia by CGM Use

Insulin Pump Use Has Increased Mainly in Youth

Pump Manufacturer

CGM Use Has Increased Substantially

CGM Use by Year

CGM Use by Insulin Delivery Method

CGM Device Type

Automated Insulin Delivery

Biostator Glucose Controlled Insulin Infusion System

Implantable Insulin Pump & External Controller

Devices, Algorithms, and Services of the Artificial Pancreas

Input: Continuous Glucose Monitoring; Output: Insulin pump

Automated Insulin Delivery Systems in Development

βeta βionics

Insulet Corporation

DIY

Medtronic MiniMed

Multiple Academic Groups

