KIDNEY STONES

BY

DR ANGELOS N. MANGANIOTIS, MD, FACS

STAFF UROLOGIST

BOCA RATON REGIONAL HOSPITAL

DISCLOSURES

- STAFF PHYSICIAN AT BOCA RATON REGIONAL HOSPITAL
- GROUP PRACTICE WITH UROLOGY GROUP OF FLORIDA
- VOLUNTARY ASSISTANT PROFESSOR AT FLORIDA ATLANTIC UNIVERSITY, AND FLORIDA INTERNATIONAL UNIVERSITY
- No commercial affiliations to disclose

EPIDEMIOLOGY

- ABOUT 8.8% OF POPULATION IS AFFECTED-PREVALENCE BETWEEN 1-15%
- Peak age incidence is 30-69 in men vs 50-79 in women
- Double incidence over past 40 years.-Maybe due to better imaging
- Annual Healthcare expenditure \$2.1 Billion in 2000 (\$983 Million inpatient)

GENDER, RACE, AGE

- HISTORICALLY, MEN ARE TWO TO THREE TIMES MORE COMMON BUT NOW LESS THAN TWICE AS COMMON
- RACE PREVALENCE: WHITES, THEN HISPANICS (70%), ASIANS (63%) AND AFRICAN-AMERICANS (44%)
- PEAK INCIDENCE AT AGE 40-70 BUT PEAK IS LATER WITH WOMEN-(MENOPAUSE)

GEOGRAPHY, CLIMATE, OCCUPATIONS

- HOT, ARID AND DRY CLIMATES-TROPICAL, DESERT, MOUNTAINS
- HIGHEST PREVALENCE IN SOUTHEAST STATES-"STONE BELT"
- HIGHEST INCIDENCE JULY THROUGH SEPTEMBER-WARM MONTHS
- More common in workers in hot environments (steelworkers) and sedentary professionals

OBESITY, METABOLIC SYNDROME, DIABETES

- Prevalence and incidence directly related to weight and BMI up to 30%-more significant with women
- METABOLIC SYNDROME-OBESITY, HYPERLIPIDEMIA, HYPERTENSION, HYPERGLYCEMIA
- METABOLIC SYNDROME IS ASSOCIATED WITH UP TO TRIPLING INCIDENCE OF KIDNEY STONES.
- TYPE 2 DIABETES IS ASSOCIATED WITH INCREASED INCIDENCE
- EXCRETION OF STONE PROMOTERS AND PH EFFECTS OF ABOVE

STONE TYPES

- CALCIUM OXALATE MONOHYDRATE
- CALCIUM OXALATE DIHYDRATE
- TRICALCIUM PHOSPHATE
- CALCIUM HYDROGEN PHOSPHATE DIHYDRATE
- URIC ACID
- MAGNESIUM AMMONIUM PHOSPHATE
- CYSTINE
- MEDICATION STONES (INDINAVIR, TRIAMTERENE, EPHEDRINE)

STONE CHEMISTRY

- Urine is an aqueous solution that contains organic and inorganic compounds
- STONE FORM THROUGH SUPERSATURATION OF STONE FORMING SALTS (E.G. CALCIUM OXALATE)
- THERMODYNAMIC SOLUBILITY PRODUCT (KSP)-WHEN IT'S EXCEEDED, CRYSTALS WILL FORM
- Urine has protein inhibitors which allow higher concentrations to be held in solution before precipitation
- FORMATION PRODUCT IS HIGHER THAN SOLUBILITY PRODUCT
- MOST IMPORTANT FACTORS IN URINE ARE CALCIUM AND OXALATE CONCENTRATIONS

STONE FORMATION

CRYSTAL FORMATION AND GROWTH

- Increased Calcium Oxalate Supersaturation due to Low Volume, magnesium and Citrate, high uric acid, oxalate, calcium and phosphate
- Homogeneous vs Heterogeneous Nucleation-"The Matrix"
- OXALATE-INDUCED CELL INJURY ON RENAL TUBULAR CELLS
- ROLE OF PH

CITRATE- "THE GOOD GUY"

- BINDS CALCIUM ION IN URINE SO LESS IONIC CALCIUM IS AVAILABLE TO BIND OXALATE AND PHOSPHATE
- INHIBITS SPONTANEOUS PRECIPITATION OF CALCIUM OXALATE CRYSTALS
- Prevents Heterogeneous Nucleation of Calcium oxalate by Monosodium urate

OTHER INHIBITORS-"THE OTHER GOOD GUYS"

- MAGNESIUM
- NEPHROCALCIN
- TAMM-HORSFALL PROTEIN-MOST COMMON IN URINE, PRESENT IN MATRIX
- UROPONTIN
- HEPARIN SULFATE
- WATER!!!
- INHIBIT NUCLEATION, GROWTH AND AGGREGATION

CALCIUM-"BAD GUY"

- ONLY 30-40% OF INGESTED CALCIUM IS ABSORBED
- VITAMIN D STIMULATES INTESTINAL ABSORPTION
- $\downarrow Ca \rightarrow \uparrow PTH \rightarrow \uparrow 1\alpha Hydroxylase \rightarrow \uparrow vit 1,25(OH)D \rightarrow \uparrow intestinal Ca absorption$
- PTH enhances renal calcium reabsorption and reduces reabsorption of phosphate
- MOST CALCIUM ACTIVELY REABSORBED AT RENAL PROXIMAL TUBULE

OXALATE-"THE REALLY BAD GUY"

- Passive intestinal absorption-only 6-14% in ion form
- COINGESTION WITH CALCIUM OR MAGNESIUM DECREASES ABSORPTION
- ROLE OF INTESTINAL OXALOBACTER FORMIGENES-OUR LITTLE FRIEND
- ALMOST ALL OXALATE ABSORBED GET EXCRETED IN THE GLOMERULUS

HYPERCALCIURIA

Most common abnormality noted in stone formers

More than 200mg/day urinary calcium

ABSORPTIVE-INTESTINAL HYPERCALCIURIA: VITAMIN D MEDIATED, SARCOIDOSIS, NORMOCALCEMIA EXCRETORY-RENAL HYPERCALCIURIA: IMPAIRED RENAL TUBULAR REABSORPTION, NORMOCALCEMIA RESORPTIVE-BONE HYPERCALCIURIA: ROLE OF PTH, PTHRP, CORTICOSTEROIDS, HYPERCALCEMIA

HYPEROXALURIA

- MORE THAN 40MG/DAY OF URINARY OXALATE
- PRIMARY HYPEROXALURIA-GENETIC DISEASE
- Intestinal malabsorption-chronic diarrhea, Crohn's, celiac sprue, bariatric surgery, bowel resection
- EXCESSIVE DIETARY INTAKE-PLANT SOURCE, TEA, CHOCOLATE, NUTS, SPINACH, POTATOES, ETC.

HYPERURICOSURIA

- 10% OF STONE FORMERS
- URIC ACID MORE THAN 600 MG/DAY
- INCREASED DIETARY PROTEIN "GOUTY DIATHESIS"
- LYMPHOPROLIFERATIVE DISEASES, ANEMIAS, POLYCYTHEMIA
- URIC ACID STONES FORM IN LOW PH, LOW URINE VOLUME AND HYPERURICOSURIA
- INCREASE CALCIUM OXALATE STONES BY HETEROGENEOUS NUCLEATION

HYPOCITRATURIA

- CITRATE LESS THAN 320MG/DAY
- IMPORTANT AND CORRECTABLE CAUSE OF KIDNEY STONE FORMATION
- METABOLIC ACIDOSIS REDUCES URINARY CITRATE VIA ENHANCED TUBULAR REABSORPTION
 AND DECREASED SYNTHESIS IN KIDNEY-DISTAL RTA (HIGH URINE PH, HIGH SERUM
 BICARBONATE, HYPOKALEMIA, HYPERCHLOREMIA)
- Consider acquired RTA-obstructive uropathy, recurrent pyelonephritis, atn, transplantation, NSAIDS, Sarcoidosis, primary hyperparathyroidism

INFECTION STONES

- Role of Urease Producing Bacteria-Proteus, Klebsiella, Pseudomonas, Staph Aureus
- MAGNESIUM AMMONIUM PHOSPHATE HEXAHYDRATE AND CALCIUM PHOSPHATE
- 2:1 WOMEN VS MEN
- Most staghorn stones are infection stones
- INCREASED RISK-DIABETICS, SPINAL CORD INJURY, URINARY DIVERSION

MISCELLANEOUS STONES

- AMMONIUM ACID URATE-LAXATIVE ABUSE AND INFLAMMATORY BOWEL DISEASE
- Matrix stones-confuse with tumors on CT
- MEDICATION STONES-INDINAVIR, EPHEDRINE, TRIAMTERENE
- WATCH OUT FOR CORTICOSTEROIDS, VITAMIN D, ANTACIDS, TOPIRAMATE (TOPAMAX)

METABOLIC STONE EVALUATION

- FIRST TIME STONE FORMERS HAVE 50% RISK OF RECURRENCE IN 10 YEARS
- CHILDREN-UNDERLYING METABOLIC DISORDERS
- STRONG FAMILY HISTORY
- RECURRENT FORMATION
- INTESTINAL DISEASE-ESPECIALLY DIARRHEA
- OSTEOPOROSIS AND FRACTURES
- RECURRENT UTI
- SOLITARY KIDNEY AND OTHER ANATOMIC ABNORMALITIES
- Renal insufficiency

EVALUATION OF THE STONE PATIENT

- HISTORY INCLUDING MEDICATIONS AND SUPPLEMENTS
- BLOOD SCREEN: BASIC METABOLIC PANEL, CALCIUM, PTH, URIC ACID
- URINALYSIS (PH > 7.5 infection,PH< 5.5 uric acid) and Culture
- RADIOGRAPHY-KUB, RENAL ULTRASOUND, NCCT
- STONE ANALYSIS
- 24-HOUR URINE STONE PANEL-VOLUME, CALCIUM, OXALATE, CITRATE, SODIUM, PHOSPHATE, MAGNESIUM, POTASSIUM, PH, URIC ACID, SULFATE

NONCONTRAST CT ABDOMEN AND PELVIS

NON-CONTRAST CT ABDOMEN AND PELVIS

4161 · STONE ANALYSIS

Stone Analysis with Image

RESULT

FILE COPY

Specimen Source Kidney

Nidus

Not observed

Component 1

Calcium Oxalate Dihydrate (Weddellite) 50%

Carbonate Apatite (Dahllite) 50%

Stone Weight 0.1360 g

IMAGE

Scale: 1 Division = 1mm

CASE STUDY: 65 YO FEMALE STONE ANALYSIS

Litholink Laboratory Reporting System"

Patient Results Report

10/11/1952

Values larger, bolder and more towards red indicate increasing risk for kidney stone formation. See reverse for further details.

Stone Risk Factors / Cystine Screening: Negative (06/22/2006)

DATE	SAMPLE ID	Vol 24	SS CaOx	Ca 24	0x 24	Cit 24	SS CaP	pH	SS UA	UA 24
09/21/16	S20316380	1.76	7.67	174	38	40 *	1.94	6.652	0.23	0.755
05/27/09	\$507682	1.83	7.76	130	51	608	1.55	7.514	0.02	0.553
11/18/08	S435277	1.55	7.92	226	30	259	1.57	6.520	0.27	0.596
06/20/06	S188673	1.34	9.30	117	50	440	1.93	6.826	0.14	0.569
REFERENCE RANGE		0.5 - 4L	6-10	male <250 female <200	20 - 40	male >450 female >550	0.5 - 2	5.8 - 6.2	0-1	male <0.800 female <0.750

Dietary Factors

DATE	SAMPLE ID	Na 24	K 24	Mg 24	P 24	Nh4 24	CI 24	Sul 24	UUN 24	PCR
	\$ \$20316380	82	49	54	0.813	34	68	55	10.60	1.2
5/27/09	S507682	111	75	63	0.515	13	96	26	6.91	
/18/08	S435277	156	30	91	0.445	41	163	25	8.56	1.0
	S188673	120	32	56	0.740	31	78	30	8.29	1.1
	ICE RANGE	50 - 150	20 - 100	30 - 120	0.6 - 1.2	15 - 60	70 - 250	20 - 80	6-14	0.8 - 1.4

Normalized Values

DATE	SAMPLE ID	WEIGHT	Cr 24	Cr 24/Kg	Ca 24/Kg	Ca 24/Cr 24	
	S \$20316380	63.5	1038	16.3	2.7	167	
	S507682		840			155	
11/18/08	S435277	62.6	778	12.4	3.6	290	
06/20/06	S188673	100000	998	16.9	2.0	118	
	ICE RANGE			male 18-24 female 15-20	<4	<140	

Page 3 of 4 Version: 7.2.5.21

Date Reported: 09/23/2016

Laboratory Director 2250 West Campbell Park Drive 312 243 3297 Facsimile CLIA# 14D0897314 Chicago, Illinois 60612

800 338 4333 Telephone www.litholink.com

CASE STUDY: 65 YO FEMALE 24 HOUR STONE RISK

CLASSIFICATION OF NEPHROLITHIASIS

- 1. ABSORPTIVE HYPERCALCIURIA
- 2. RENAL HYPERCALCIURIA
- 3. PRIMARY HYPERPARATHYROIDISM
- 4. UNCLASSIFIED HYPERCALCIURIA
- 5. HYPEROXALURIC CALCIUM NEPHROLITHIASIS-ENTERIC, PRIMARY, DIETARY
- 6. HYPOCITRATURIC CALCIUM NEPHROLITHIASIS-DISTAL RTA, THIAZIDE, CHRONIC DIARRHEA

CLASSIFICATION OF NEPHROLITHIASIS-CONTINUED

- 7. HYPOMAGNESURIC CALCIUM NEPHROLITHIASIS
- 8. GOUTY DIATHESIS-URIC ACID STONES
- 9. Cystinuria-inborn error of metabolism
- 10. INFECTION STONES
- 11. LOW URINE VOLUME ($< 2,000 \, mL$)
- 12. MISCELLANEOUS-IDIOPATHIC

MEDICAL MANAGEMENT-FLUIDS

- FORCED INCREASE OF FLUID INTAKE TO MORE THAT 2 LITERS OF URINE A DAY
- CARBONATED WATER INCREASED URINARY CITRATE-ESPECIALLY CITRUS-FLAVORED SODAS
- BUT SODA FLAVORED WITH PHOSPHORIC ACID MAY INCREASE RISK
- WATER HARDNESS PROBABLY INCONSEQUENTIAL
- CITRUS JUICES INCREASE URINARY VOLUME AND CITRATE-PREFER LEMON JUICE
- DRINK AT LEAST 3 LITERS OF WATER A DAY

MEDICAL MANAGEMENT-PROTEIN AND SODIUM

- PROTEIN INGESTION INCREASES URINARY CALCIUM, OXALATE AND URIC ACID
- HIGH-SODIUM DIET CAUSES INCREASED CALCIUM SALTS IN URINE
- RECOMMEND LOW ANIMAL PROTEIN AND LOW SALT DIET
- ASSOCIATION WITH OSTEOPOROSIS IN WOMEN

MEDICAL MANAGEMENT-OBESITY

- OBESITY AND METABOLIC SYNDROME INCREASE STONE FORMATION-ESP. WOMEN
- URIC ACID AND CALCIUM OXALATE VIA MORE ACIDIC URINE AND INFLAMMATION
- Low- Carb and High-protein diets cause increase stone risk and bone loss
- BARIATRIC SURGERY INCREASES STONE RISK

MEDICAL MANAGEMENT- CALCIUM, OXALATE

- Moderate (Not low) calcium ingestion is recommended
- LOW CALCIUM INGESTION LEADS TO HIGH OXALATE ABSORPTION
- CALCIUM SUPPLEMENTATION SHOULD BE TAKEN WITH MEALS-PREFER CALCIUM CITRATE
- VIT D SUPPLEMENTATION SHOULD BE DONE BY MONITORING 24-HOUR CALCIUM
- LOW-OXALATE DIET IS RECOMMENDED ON EVERYONE ESP. ENTERIC CAUSES
- LIMIT VITAMIN C TO 2 G/DAY

MEDICAL THERAPY-ABSORPTIVE, RENAL, HYPERPTH

- THIAZIDES DECREASE URINARY CALCIUM WHILE INCREASE URINARY SODIUM ON DISTAL RENAL TUBULE
- THIAZIDES ARE IDEAL FOR RENAL HYPERCALCIURIA-FIRST LINE
- USED IN ABSORPTIVE HYPERCALCIURIA
- Consider concurrent potassium citrate (40-60 mEq/day)
- SIDE EFFECTS-POTASSIUM WASTING, CRAMPS, HYPERURICOSURIA, HYPOCITRATURIA
- ONLY THERAPY FOR PRIMARY HYPERPARATHYROIDISM IS ADENOMA SURGICAL REMOVAL

MEDICAL THERAPY-HYPERURICOSURIC CALCIUM OXALATE STONES

- DIETARY PROTEIN RESTRICTION
- ALLOPURINOL 300 MG/DAY-BLOCKS XANTHINE OXIDASE MEDIATED CONVERSION TO URIC
 ACID
- RECOMMEND URINARY ALKALINIZATION TO PH ABOVE 6.0 BUT NOT OVER 7.0
- POTASSIUM CITRATE (30-60 MEQ/DAY) CAN INCREASE URINARY PH

MEDICAL THERAPY-ENTERIC HYPEROXALURIA

- FORCED FLUID INTAKE —VERY IMPORTANT
- RECOMMEND DIETARY CALCIUM SUPPLEMENTATION (OTC 1 GR PO QID) TO BIND OXALATE
- AVOID SOLID POTASSIUM CITRATE FORMS-POOR ABSORPTION
- SUPPLEMENT WITH CALCIUM CITRATE
- CONSIDER PROBIOTICS FOR O. FORMIGENES

MEDICAL THERAPY-HYPOCITRATURIA, RTA

- FIRST LINE IS TO SUPPLEMENT WITH POTASSIUM CITRATE (UP TO 120 MEQ/DAY FOR RTA)
- AVOID THIAZIDE-INDUCED HYPOCITRATURIA BY ADDING POTASSIUM CITRATE
- Most common side effect is GI upset

MEDICAL THERAPY-OTHERS

- HYPOMAGNESURIC CALIUM NEPHROLITHIASIS-MAGNESIUM AND CITRATE SUPPLEMENTATION
- Gouty diathesis-volume, protein restriction, increase PH but not above pH 7.0
- CYSTINURIA-SODIUM RESTRICTION, THIOLA
- AMMONIUM ACID URATE-ANOREXIA, LAXATIVE ABUSE

MEDICAL THERAPY-INFECTION STONES

- BEST TREATED WITH SURGICAL REMOVAL
- TREAT INFECTION FIRST
- HIGH RISK OF SEPSIS
- CONSIDER ACETOHYDROXAMIC ACID (LITHOSTAT) FOR NONOPERATIVE CANDIDATES
- SIGNIFICANT SIDE EFFECTS (DVT, ANEMIA, RASH, ETC)

UROLOGY CONSULT

RENAL AND URETERAL STONES-SURGERY

- ΟΥ ΤΕΜΕΩ ΔΕ ΟΥΔΕ ΜΗΝ ΛΙΘΙΩΝΤΑΣ, ΕΚΧΩΡΗΣΩ ΔΕ ΕΡΓΑΤΗΣΙΝ ΑΝΔΡΑΣΙ ΠΡΑΞΙΟΣ ΤΗΔΕ
- HIPPOCRATIC OATH
- 10% of screened population have asymptomatic renal stones
- FOUR MINIMALLY INVASIVE PROCEDURES
- ESWL, URS, PCNL, LAP AND ROBOTIC SURGERY

PRETREATMENT SURGICAL ASSESSMENT

- HISTORY-AVOID COAGULOPATHY, CONSIDER INFECTION, MEDICATIONS
- PHYSICAL EXAM-RENAL COLIC, TENDERNESS
- IMAGING-NON CONTRAST CT STONE STUDY (NOT UROGRAM) VS RENAL ULTRASOUND
- LAB-URINALYSIS, <u>CULTURE</u>, BMP, CBC, PT/PTT

RENAL AND URETERAL STONES-SURGERY DECISION

- Size, Number, Location, Composition
- Anatomic factors: obstruction, hydronephrosis, UPJ, horseshoe, ectopia
- CLINICAL FACTORS: INFECTION, COAGULOPATHY, PREGNANCY, SOLITARY KIDNEY, ELDERLY
- ALL Staghorn struvite stones in a healthy patient must be surgically removed (AUA Guideline)

SHOCK WAVE LITHOTRIPTER

SHOCK WAVE LITHOTRIPSY

- OUTPATIENT PROCEDURE
- ESWL primarily done for renal stones up to 2 cm and proximal ureteral stones
- Can avoid stent insertion
- CONTRAINDICATIONS ARE PREGNANCY, UNCORRECTED
 COAGULOPATHY, UNTREATED UTI, OBSTRUCTION DISTAL
 TO STONE, ARTERIAL ANEURYSM NEAR STONE
- CONSIDER PATIENT SIZE, STONE COMPOSITION, UNFAVORABLE LOWER POLE ANATOMY
- NOT READILY AVAILABLE

SHOCK WAVE LITHOTRIPSY

- Shock waves generated outside the body propagate to target stone and fragment (F1 is generator and F2 is stone)
- LOCALIZATION IS DONE WITH FLUOROSCOPY AND ULTRASOUND
- REQUIRE DEDICATED UNIT AND TRAINED TECHNICIAN
- SIDE EFFECTS: ACUTE RENAL INJURY (HEMATURIA), ACUTE EXTRARENAL DAMAGE (RARE), ARRHYTHMIAS, CHRONIC RENAL INJURY
- MITIGATED BY DECREASING ENERGY AND SLOWLY RAMPING UP

URETEROSCOPY

- FLEXIBLE OR RIGID
- IMPROVED TECHNOLOGY

URETEROSCOPIC EXTRACTION

- OUTPATIENT PROCEDURE
- PRIMARY THERAPY FOR DISTAL URETERAL STONE AND SMALLER RENAL STONES NOT AMENABLE TO ESWL
- FLEXIBLE URETEROSCOPY CAN BE USED FOR RENAL STONES
- IMPROVED DUE TO DIGITAL SCOPES AND SMALLER CALIBER SCOPES
- HOLMIUM: YAG LASER AND BASKET EXTRACTION
- ALWAYS LEAVE A STENT AFTER PROCEDURE
- READILY AVAILABLE IN HOSPITAL AND SURGICENTER

URETEROSCOPIC LASER LITHOTRIPSY

PERCUTANEOUS NEPHROLITHOTOMYPCNL

INPATIENT PROCEDURE

DIRECT ACCESS TO RENAL COLLECTING SYSTEM AND FRAGMENTATION AND REMOVAL OF ALL STONES

Aspirin and antiplatelet drugs held for at least 7 days

MOST COMMON COMPLICATION IS HEMORRHAGE AND SEPSIS

CONTRAINDICATIONS ARE UNCORRECTED COAGULOPATHY AND UNTREATED UTI

One third of patients with a stent after procedure despite sterile urine will be colonized on subsequent urine culture

LAPAROSCOPIC AND ROBOTIC STONE REMOVAL

- RESERVED FOR UNIQUE CASES WHERE ANATOMIC FACTORS OR SEVERE STONE BURDEN PRECLUDE ANY ENDOSCOPIC PROCEDURE
- RARELY USED

STONES IN PREGNANCY

- INCIDENCE IS SAME AS AGE MATCHED NON-PREGNANT WOMEN
- Upper tract dilation seen in 90% of all pregnant women by third trimester
- INCREASED RENAL BLOOD FLOW BY 30-40% LEADS TO HYPERCALCIURIA AND HYPERURICOSURIA
- MITIGATED BY INCREASED URINARY CITRATE AND MAGNESIUM AND DIURESIS

STONES IN PREGNANCYEVALUATION

Renal colic with micro- or macroscopic hematuria

Check for uti

Consider MRI urogram

Avoid x-ray especially first trimester

Ultrasonography is standard

STONES IN PREGNANCY-TREATMENT

- 50-80% WILL PASS SPONTANEOUSLY
- May use ureteral stent or percutaneous nephrostomy as temporizing measures.
- ACCELERATED ENCRUSTATION MAY OCCUR
- RECENT IMPROVEMENTS IN URETEROSCOPIC TECHNOLOGY PERMIT TREATMENT OF ALL URETERAL AND KIDNEY STONES
- MINIMIZE FLUOROSCOPY DURING PROCEDURE AND SHIELD FETUS

REFERENCES AND FURTHER READING

• CHAPTERS 51-54 CAMPBELL-WALSH UROLOGY, 2016