Nonalcoholic Fatty Liver Disease: Where Do We Stand In 2016

K. Rajender Reddy MD
Ruimy Family President's Distinguished Professor of Medicine
Director of Hepatology
Director, Viral Hepatitis Center
Medical Director of Liver Transplantation
University of Pennsylvania
Objectives-Non-Alcoholic Fatty Liver Disease

• Causes, Epidemiology, and Natural History of Non-alcoholic Fatty Liver Disease
• Pathogenesis and Clinical Presentation
• Treatment
Case

• 48 y/o Hispanic male referred for fatty liver on CT scan
• No alcohol history
• Past medical history
 – HTN, Hyperlipidemia, Obesity (BMI: 32), DM
• Meds:
 – Zocor, lisinopril, ASA, HCTZ, metformin
Case

- Labs
 - ALT: 67
 - AST: 58
 - Alk Phos: 140
 - Albumin: 3.9
 - HBV, HCV negative
 - Transferrin sat: 20%, ferritin: 400
 - HbA1C: 6.7
 - ANA: 1:320
 - Fasting Insulin: 25uIU/mL
Prevalence of Chronic Liver Disorders in the United States

NAFLD

• Spectrum of conditions characterized histologically mainly by macrovesicular steatosis and in the absence of consumption of alcohol in amounts thought to be harmful

• Two histological patterns
 - Steatosis alone
 - Steatohepatitis
Causes of Steatosis and Steatohepatitis

- "Primary"
- "Secondary"
 - Nutritional
 - Drugs
 - Inborn errors
 - Miscellaneous
Secondary Causes of Steatosis and Steatohepatitis

• **Nutritional**
 – Starvation
 – TPN
 – Rapid weight loss

• **Drugs**
 – Steroids
 – Oestrogens
 – *Tetracycline
 – *Valproate
 – *Anti retrovirals
 – § amiodarone

• **Metabolic**
 – Acute fatty liver of Pregnancy
 – Lipodystrophy
 – Weber-Christian Dz

• **Misc**
 – Small Bowel Overgrowth
 – Mushrooms

* mitochondrial defect
§ phospholipidosis
How much alcohol is too much for NASH?

• Alcoholic liver dz (conventional wisdom)
 – 30-40gm/day ♂ (3-4 drinks)
 – 60-80gm/day ♂ (6-8 drinks)

• Exclusion criteria for NASH Clinical Research Network:
 – 7 drinks (70g)/week ♂ or 1 drink/day
 – 14 drinks (140g)/week ♂ or 2 drinks/day
Epidemiology
NAFLD and NASH Prevalence

Prevalence (%)

- NAFLD-Overall: 46
- NAFLD-Hispanic: 58.3
- NAFLD-Caucasian: 44.4
- NAFLD-African American: 35.1
- NASH-Overall: 12.2
- NASH-Among Diagnosed NAFLD: 29.9

Williams CD et al, Gastroenterology 2011;140:124-31
NASH Prevalence Among Ethnic Groups

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>Prevalence (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>12.2</td>
<td>40/328</td>
</tr>
<tr>
<td>Hispanic</td>
<td>19.4</td>
<td>14/72</td>
</tr>
<tr>
<td>Caucasian</td>
<td>9.8</td>
<td>20/205</td>
</tr>
<tr>
<td>African American</td>
<td>13.5</td>
<td>5/37</td>
</tr>
<tr>
<td>Other</td>
<td>6.7</td>
<td>1/14</td>
</tr>
</tbody>
</table>

p = 0.03

Williams CD et al, Gastroenterology 2011;140:124-31
NASH Prevalence Comparing Diabetics to Non-Diabetics

Williams CD et al, Gastroenterology 2011;140:124-31
Non-obese Population in a Developing Country Has a High Prevalence of NAFLD

- Prospective epidemiological study in West Bengal, India
- Diagnosis of NAFLD was by US + CT

Total N = 1,911

8.7% NAFLD

NAFLD

- Cardiovascular Disease
- OSA
- Hypothyroidism
- Diabetes
- ??Adenomatous Polyps
- Malignancy
Natural history of NAFLD
Natural History of NAFLD & NASH

NAFLD

-> Isolated fatty liver
 1. None to very minimal progression to cirrhosis
 2. No increased risk of death compared with the general population

NAFLD

NASH

-> NASH Cirrhosis
 1. Increased risk of death compared with general population. Causes of death, in order:
 a. Cardiovascular
 b. Malignancy
 c. Liver-related
 2. NASH with fibrosis portends worse prognosis
 a. Fibrosis progression associated with DM, severe IR, BMI, weight gain >5kg, rising ALT, AST, cigarette smoking

-> HCC
 ~7% over 6.5 years

-> Decompensation
 ~31% over 8 years

Pathogenesis and Diagnosis
Working Hypothesis: Metabolic Syndrome

Type II Diabetes
Fasting Glucose
≥ 110 mg/dL

Triglycerides
≥ 150 mg/dL

Obesity
Wax circumference
> 102 cm in men and > 88 cm in women

HDL Cholesterol
< 40 mg/dL (Men)
< 50 mg/dL (Women)

Systolic BP ≥ 130 mm Hg
or diastolic ≥ 85 mm Hg

The Adult Treatment Panel III clinical definition of the metabolic syndrome
Abdominal Adiposity: The Critical Adipose Depot
Pathogenesis of NASH

Insulin resistance

FFA + insulin + cytokines

Steatosis + metabolic dysregulation

ER stress

Oxidative stress

Mitochondrial injury

Inflammatory signaling

Apoptosis

Cell death

Stellate cell activation

fibrosis
NAFLD: Genetic Risk Factor

- PNPLA3 (Adiponutrin)
- Palatin-like phospholipase domain containing protein 3
- Rs738409[G] encoded for I148M
 - Associated with increased hepatic fat levels \((p=5.9 \times 10^{-10})\)
 - 2-fold increase in homozygotes
 - Associated with hepatic inflammation \((p=3.7 \times 10^{-4})\)
 - Associations remained significant after adjustment for obesity, DM, alcohol and ancestry
- Rs6006460[T], encoding S453I, is associated with lower hepatic fat
- 2 PNPLA3 variants account for 72% of ethnically related variation

The polymorphisms C-482T and T-455C in *APOC3* are associated with NAFLD and insulin resistance in Asian Indian Men

NAFLD subtypes

NAFL (non-alcoholic fatty liver)
- simple steatosis

NASH (non-alcoholic steatohepatitis)
- ballooned hepatocyte
- Fibrosis F0-F4 (cirrhosis)

AASLD Practice Guidelines 2012
Images adapted from Wikipedia.org; pathology.med.umich.edu; www.justintimemedicine.com
Screening using Non-invasive Biomakers

<table>
<thead>
<tr>
<th>FibroTest</th>
<th>SteatoTest</th>
<th>NashTest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-Macroglobulin</td>
<td>(\alpha)-Macroglobulin</td>
<td>(\alpha)-Macroglobulin</td>
</tr>
<tr>
<td>Apolipoprotein A1</td>
<td>Apolipoprotein A1</td>
<td>Apolipoprotein A1</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>Haptoglobin</td>
<td>Haptoglobin</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>Total Bilirubin</td>
<td>Total Bilirubin</td>
</tr>
<tr>
<td>GGT</td>
<td>GGT</td>
<td>GGT</td>
</tr>
<tr>
<td>ActiTest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)-Macroglobulin</td>
<td></td>
<td>(\alpha)-Macroglobulin</td>
</tr>
<tr>
<td>Apolipoprotein A1</td>
<td></td>
<td>Apolipoprotein A1</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td></td>
<td>Haptoglobin</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td></td>
<td>Total Bilirubin</td>
</tr>
<tr>
<td>GGT</td>
<td></td>
<td>GGT</td>
</tr>
<tr>
<td>ALT</td>
<td></td>
<td>ALT</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td>BMI</td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
<td>Triglycerides</td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td>Cholesterol</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td>Height</td>
</tr>
<tr>
<td>AST</td>
<td></td>
<td>AST</td>
</tr>
<tr>
<td>Glucose</td>
<td></td>
<td>Glucose</td>
</tr>
</tbody>
</table>
Hepatic Elastography

- Fibroscan is a rapid and non-invasive measure of hepatic stiffness
- Hepatic stiffness correlates with fibrosis

The probe induces an elastic wave through the liver

The velocity of the wave is evaluated in a region located from 2.5 to 6.5 cm below the skin surface

Sampled volume: 1: 500
Problems With Transient Elastography

• Anatomical barriers
 – Fat
 – Ascites
• Operator experience
• Conditions that influence liver stiffness
 – Acute hepatitis or hepatitis flare
 – Steatosis
 – Extra- and intrahepatic cholestasis
 – Cardiac failure
Red Flags for NASH

- Age
- Gender
- Hispanic
- HTN
- Obesity
- Diabetes
- ALT and AST level
- AST/ALT ratio
- Ferritin
- Insulin level

No lab test or imaging study will be able to predict with 100% accuracy

The more risk factors... the more concerned

Risk factors/Red Flags for NASH:
- Age ≥ 50
- Hispanic
- Ferritin > 1.5x normal (>300 women, >400 ng/ml men)
- BMI ≥ 30
- Diabetic
- AST/ALT>0.8
Cytokeratine-18 Fragments

For every 50 U/L increase in plasma K-18, the likelihood of having NASH increased 30%.

<table>
<thead>
<tr>
<th>K-18 level (U/L)</th>
<th>Sensitivity, % (95% CI)</th>
<th>Specificity, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>75 (64-83)</td>
<td>81 (61-93)</td>
</tr>
<tr>
<td>279</td>
<td>71 (60-80)</td>
<td>85 (65-96)</td>
</tr>
<tr>
<td>281</td>
<td>67 (57-77)</td>
<td>89 (70-98)</td>
</tr>
<tr>
<td>287</td>
<td>65 (54-75)</td>
<td>92 (75-99)</td>
</tr>
</tbody>
</table>

Treatment
Lifestyle Modification

- Diet
- Exercise
- Sleep
- Coffee
- Vitamin D
Lifestyle Modification Program

- Assessed benefits of dietician led lifestyle modification for 12 months
 - Weekly meetings x 4 month, then monthly x 8
 - Moderate carbohydrate, low fat, low glycemic index
 - Emphasis on fruits and vegetables
 - Exercise: moderate intensity for 30 minutes 3-5 days/week
 - Increased to daily
- 154 Patients Enrolled
- Primary Endpoint
 - Remission of NAFLD: IHTG of < 5% by MRS
- 64% in intervention group resolved NAFLD
- 20% in control group resolved NAFLD

Wong VW, J Hepatol 2013
Degree of weight loss and resolution of NAFLD

Wong VW, J Hepatol 2013
Exercise

• Meta-analysis of 12 studies involving 439 patients with NAFLD
• Exercise included either aerobic and/or progressive resistance training
• Exercise frequency was from 2-6 days/week
 – Walking, cycling
 – Weight machines
• Pooled data in exercise alone groups showed significant improvement in steatosis (p=0.02)
• In 4/6 studies evaluating exercise alone, improvement seen without weight loss

Keating SE, J Hepatol 2012
AASLD Guidelines on Treatment (Weight Loss and Exercise)

• Weight loss generally reduces hepatic steatosis, achieved either by hypocaloric diet alone or in conjunction with increased physical activity.

• Loss of at least 3 – 5 % of body weight appears necessary to improve steatosis, but a greater weight loss (up to 10 %) may be needed to improve necroinflammation.

• Exercise alone in adults with NAFLD may reduce hepatic steatosis but its ability to improve other aspects of liver histology remains unknown.

Coffee and NASH

Stage of Fibrosis

<table>
<thead>
<tr>
<th>Coffee Caffeine Per Day (mg)</th>
<th>Stage of Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.89 (coffee cup equiv=1.87)</td>
<td>1 - negative ultrasound</td>
</tr>
<tr>
<td>170.30 (coffee cup equiv=1.24)</td>
<td>2 - bland steatosis</td>
</tr>
<tr>
<td>122.00 (coffee cup equiv=0.89)</td>
<td>3 - NASH stage 0-1</td>
</tr>
<tr>
<td>252.7 (coffee cup equiv=1.24)</td>
<td>4 - NASH stage 2-4</td>
</tr>
</tbody>
</table>

Treatment Options for NAFLD/NASH

- Weight Loss
- Exercise
- Omega 3 Fatty Acids—Premature to recommend
- Pioglitazone
- Vitamin E
- Metformin
- Atorvastatin—Premature to recommend
- Ursodiol—Not recommended
- Fore-gut bariatric surgery—not recommended to treat NASH alone
Pioglitazone and Vitamin E
PIVENS Trial

247 non-diabetic NASH pts

Vitamin E 800 IU day

Placebo

Pioglitazone 30mg day

48 weeks of treatment

Liver Bx

The primary outcome was an improvement in histologic findings, which required improvement by 1 or more points in the hepatocellular ballooning score; no increase in the fibrosis score; and either a decrease in the activity score for nonalcoholic fatty liver disease to a score of 3 points or less or a decrease in the activity score of at least 2 points, with at least a 1-point decrease in either the lobular inflammation or steatosis score.

The primary outcome was an improvement in histologic findings, which required improvement by 1 or more points in the hepatocellular ballooning score; no increase in the fibrosis score; and either a decrease in the activity score for nonalcoholic fatty liver disease to a score of 3 points or less or a decrease in the activity score of at least 2 points, with at least a 1-point decrease in either the lobular inflammation or steatosis score.

Changes from Baseline in ALT and AST

Changes in Insulin Resistance and Weight

AASLD Guidelines on Treatment

• Metformin has no significant effect on liver histology and is not recommended as a specific treatment for liver disease in adults with NASH.

• Pioglitazone can be used to treat steatohepatitis in patients with biopsy-proven NASH. However, it should be noted that the majority of the patients who participated in clinical trials that investigated pioglitazone for NASH were non-diabetic and that long-term safety and efficacy of pioglitazone in patients with NASH is not established.

• Vitamin E (α-tocopherol) administered at daily dose of 800 IU/day improves liver histology in non-diabetic adults with biopsy-proven NASH and therefore it should be considered as a first-line pharmacotherapy for this patient population.

• Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis.

Looking ahead: Investigational agents

FXR agonists (eg. obeticholic acid)
- Phase 2: DM NAFLD and in NASH (FLINT trial)
- Phase 3 in NASH ongoing
- Insulin resistance data mixed
- Improved liver histology
- Worsening LDL
- Pruritus

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trial completion dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide (GLP-1 analogue)</td>
<td>Sept. 2013</td>
</tr>
<tr>
<td>Sitagliptin (DPP-4 inhibitor)</td>
<td>Nov. 2013</td>
</tr>
<tr>
<td>GFT505 (PPAR α/δ agonist)</td>
<td>Jan. 2015</td>
</tr>
<tr>
<td>Obeticholic Acid (Farnesoid X Receptor Ligand)</td>
<td>Jan. 2015</td>
</tr>
<tr>
<td>Metreleptin (recombinant human leptin)</td>
<td>Sept. 2015</td>
</tr>
</tbody>
</table>

Statins and the Liver

<table>
<thead>
<tr>
<th></th>
<th>Normal ALT(1) N=1437</th>
<th>Abn ALT *(2) N=342</th>
<th>Liver dz(3) N=2245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>57 + 12</td>
<td>54 + 12</td>
<td>48 + 18</td>
</tr>
<tr>
<td>Weight</td>
<td>201 + 51</td>
<td>205 + 53</td>
<td>196 + 60</td>
</tr>
<tr>
<td>Base AST</td>
<td>22 + 7</td>
<td>55 + 37</td>
<td>57 + 49</td>
</tr>
<tr>
<td>Base ALT</td>
<td>20 + 8</td>
<td>43 + 23</td>
<td>61 + 47</td>
</tr>
<tr>
<td>Chol (mg/dl)</td>
<td>245 + 44</td>
<td>240 + 82</td>
<td>213 + 51</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>47%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>Simvastatin</td>
<td>50%</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Fluvastatin</td>
<td>3%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

- Alcohol, HCV, HBV excluded
- Cohorts 1 and 2-hyperlipidemic patients
- Cohort 3 – no statins used

(Chalasani et al. Gastroenterology 2004)
Statins and the Liver

Table

<table>
<thead>
<tr>
<th></th>
<th>Normal ALT(1)</th>
<th>Abn. ALT(2)</th>
<th>Liver dz(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statin duration (yr)</td>
<td>0.48±0.08</td>
<td>0.48±0.08</td>
<td></td>
</tr>
<tr>
<td>Statin discontinue</td>
<td>10.7%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td>↑ AST/ALT 1-10 xULN</td>
<td>1.7%</td>
<td>4.7%</td>
<td>6.4%</td>
</tr>
<tr>
<td>p=0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ AST/ALT >10 xULN</td>
<td>0.2%</td>
<td>0.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>p=0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Alcohol, HCV, HBV excluded
- Cohorts 1 and 2 - hyperlipidemic patients
- Cohort 3 - no statins used

(Chalasani et al. Gastroenterology 2004)
NAFLD Diagnosis & Treatment Algorithm

If ≥ 2 red flags, consider liver biopsy initially

Likely NAFLD

Risk factors/Red Flags for NASH:
- Age ≥ 50
- Ferritin > 1.5x normal (>300 women, >400 ng/ml men)
- BMI ≥ 30
- Hispanic
- Diabetic
- AST/ALT>0.8

↑ ALT or Fatty Liver on Imaging

Rule out other chronic liver disease (ie. Viral hepatitis, autoimmune hepatitis, hemochromatosis, alcohol)

Check Vitamin D level & replaced if deficient

If < 1 red flag, optimize metabolic status & follow-up in 6 months

If ≥ 2 red flags, consider liver biopsy initially

NASH on liver biopsy

Diabetic or ≥ Stage 2
- 1-2 cups daily coffee
- Diet/Exercise*
- Consider:
 - Pioglitazone
 - Bariatric surgery IF comorbidities
 - Clinical trials

Nondiabetic & ≥ Stage 2
- 1-2 cups daily coffee
- Diet/Exercise*
- Consider:
 - Vitamin E
 - Bariatric surgery IF comorbidities
 - Clinical trials

Nondiabetic & < Stage 2
- 1-2 cups daily coffee
- Diet/Exercise*
- Consider:
 - Vitamin E
 - Clinical trials

No NASH on liver biopsy

Nondiabetic & < Stage 2
- 1-2 cups daily coffee
- Diet/Exercise*
- Consider:
 - Vitamin E
 - Clinical trials

No increased Liver related mortality
- Manage metabolic risk factors to minimize cardiovascular risks

Courtesy of Stephen Harrison M.D