Molecular Profiling in Neuro Oncology and the Future of Personalized Oncology:

Sajeel Chowdhary, MD
Program Director, Neuro-Oncology / Neurology
Lynn Cancer Institute (LCI)
Marcus Neuroscience Institute (MNI)
Boca Raton Regional Hospital (BRRH)
Medical Staff, Delray Medical Center

Associate Professor of Neuro-Oncology and Neurology
Charles E Schmidt College of Medicine
Florida Atlantic University (FAU)
DISCLOSURES:

• NO RELEVANT FINANCIAL DISCLOSURES AND CONFLICT OF INTERESTS
HARVEY CUSHING, MD (1869-1939): FATHER OF MODERN NEUROSURGERY AND BRAIN TUMOR CLASSIFICATION.
A physician is obligated to consider more than a diseased organ, more even than the whole man - he must view the man in his world.

— Harvey Cushing —
“The capacity of man himself is only revealed when, under stress and responsibility, he breaks through his educational shell, and he may then be a splendid surprise to himself no less than to this teachers.”

Harvey Cushing
NEWLY DIAGNOSED GLIOBLASTOMA OR OTHER HIGH GRADE GLIOMAS:

- MAXIMAL SAFE SURGICAL RESECTION
- RADIATION (IMRT / EBRT)
- TEMOZOLOMIDE
- BEVACIZUMAB
- CARMUSTINE / BCNU WAFERS (GLIADEL WAFER)
- NOVO TTF 100 A SYSTEM (OPTUNE)
- EXPERIMENTAL TRIALS RESEARCH
- MOLECULAR ONCOLOGY / PERSONALIZED ONCOLOGY
TREATMENT OPTIONS (FEW EXAMPLES):

• PCV (PROCARBAZINE, CCNU, VINCristINE) FOR OLIGODENDROGliOMAS
• METHOTREXATE, RITUXIMAB, TEMOZOLOMIDE FOR CNS LYMPHOMA
• CARBOPLATIN, CCNU, IRINOTECAN FOR RECURRENT GliOMAS
• PLATINUM AGENTS WITH ETOPOSIDE, CCNU, VINCristINE FOR MEDULLOBLASTOMAS AND GERM CELL TUMORS
• INTRA THECAL CHEMOTHERAPY AS METHOTREXATE, THIOTEPa, CYTARABINE, RITUXIMAB, TRASTUZUMAB, DEPOCYT (CURRENTLY UNAVAILABLE)
PERSONALIZED / MOLECULAR ONCOLOGY:

- PDL1 MUTATIONS (PEMBROLIZUMAB, NIVOLUMAB, ATEZOLIZUMAB, DURVALUMAB)
- BRAF MUTATIONS (VEMURAFENIB, DABRAFENIB)
- MEK INHIBITION (COBIMETINIB, TREMETINIB)
- MGMT METHYLATION AND TRIALS BASED ON THIS
- TOPO 1 MUTATION (IRINOTECAN)
- EGFR MUTATIONS / EGFRVIII VARIANT (ERLOTINIB, GEFITINIB)
- T790M MUTATION (OSIMERTINIB)
PERSONALIZED ONCOLOGY:

• IDH 1,2 MUTATIONS (TRIAL ENROLLMENT)
• 1 P AND 19 Q CO – DELETIONS (PCV)
• P53 MUTATION (TARGETED AGENTS IN DEVELOPMENT)
• ATRX
• H3 K27M (TARGETED AGENTS IN TRIALS)
• ALK / EMLA4 MUTATION (CRIZOTINIB, ALECTINIB)
PERSONALIZED ONCOLOGY:

• ROS 1
• KRAS
• RET
• HER 2
• MET
• ERCC1 (PLATINUM AGENT SENSITIVITY)
LUNG CARCINOMA SUB TYPES: THE BEGINNING

<table>
<thead>
<tr>
<th>Adenocarcinoma</th>
<th>Large cell carcinoma / not otherwise specified</th>
<th>Squamous cell carcinoma</th>
<th>Small cell lung cancer</th>
</tr>
</thead>
</table>

Where We Have Evolved

Molecular Subtypes

Genomic Profiling Enables Personalized Medicine

PERSONALIZED MEDICINE

- EGFR mutants
- ALK
- ROS1
- HER2
- B-raf
- K-ras
CGP+ with Caris Molecular Intelligence®

Understanding the molecular phenotypes of cancer to personalize therapy requires more than DNA sequencing.

DNA
- Mutations, Indels & Copy Number Variants

RNA
- Fusions & Variant Transcripts

Protein
- Immunohistochemistry

Comprehensive Genomic Profiling Plus = Standard of Care + Clinical Trial Biomarkers

<table>
<thead>
<tr>
<th></th>
<th>Immunotherapy</th>
<th>Targeted Therapy</th>
<th>Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tumor Interrogation Technologies:
- IHC
- ISH
- Next-Generation Sequencing – DNA 592 genes
- Next-Generation Sequencing – RNA 53 genes
- Pyrosequencing
The Financial Burden of Non-Responders

- **Avastin**: $3.059B
- **Rituxan**: $2.466B
- **Herceptin**: $1.526B
- **Revlimid**: $1.373B
- **Gleevec**: $1.285B
- **Taxotere**: $1.042B
- **Alimta**: $975M
- **Gemzar**: $723M
- **Tarceva**: $661M
- **Femara**: $650M
- **Erbitux**: $646M
- **Velcade**: $598M
- **Xeloda**: $508M
- **Arimidex**: $494M
- **Leuprolin**: $483M

Sources:
- Individual Drug Labels. US Food and Drug Administration. www.fda.gov
Companion Dxs & NCCN-Guidelines Require a Multi-Technology Approach

MAXIMIZING CLINICAL UTILITY WITH 60+ FDA-APPROVED THERAPY ASSOCIATIONS

DNA Sequencing
(592-Gene NGS for Mutations & Copy Number Variations)

doxorubicin dacarbazine
pembrolizumab temozolomide

RNA Sequencing
(53-Gene NGS for Fusion Analysis)
docetaxel nivolumab paclitaxel hormone therapies
gemcitabine

ceritinib crizotinib cabozantinib vandetanib

IHC
(20 biomarkers available)

Other
(CISH; Pyro Seq; Fragment Analysis)
dacarbazaine olaparib
cancer anitumumab pembrolizumab vemurafenib

afatinib cetuximab erlotinib gefitinib imatinib

For illustrative purposes. For a complete list of therapies assessed, please view the profile menu.
Unlock the Power of Immune Checkpoint Inhibitors

Comprehensive genomic and proteomic profiling can help you make more informed therapy decisions when considering immune checkpoint inhibitors.

PD-L1
Immunohistochemistry

Programmed death ligand-1 (PD-L1)
is among the most important checkpoint proteins that mediate tumor-induced immune suppression through T-cell downregulation. PD-L1 expression may indicate a more likely response to immunotherapies.

MSI
Next-Generation Sequencing

Microsatellite instability (MSI)
is caused by failure of the DNA mismatch repair (MMR) system. MSI-High correlates to an increased neoantigen burden, which makes the tumor more likely to respond favorably to immunotherapies.

TML
Next-Generation Sequencing

Total mutational load (TML)measures the total number of nonsynonymous somatic mutations identified per megabase of the genome coding area. Tumors with high TML likely harbor neoantigens and may respond more favorably to immunotherapies.

Experience data across all lineages:

- PD-L1: 46,000+
- MSI: 21,000+
- TML: 17,000+

References:
Total Mutational Load (TML)

TML by NGS measures the total number of non-synonymous, somatic mutations identified per megabase (Mb) of the genome coding area (a megabase is 1,000,000 DNA basepairs).

- Non-synonymous mutations are changes in DNA that result in amino acid changes in the protein.
- The new protein changes result in new shapes (neo-antigens) that are considered to be foreign to the immune system.
- Immune checkpoint inhibitors are able to stimulate and allow the immune system to detect these neoantigens and destroy the tumor.
- Germline (inherited) mutations are not included in TML because the immune system has a higher likelihood of recognizing these alterations as normal.
MOLECULAR PROFILING AND IMPACT IN NEURO ONCOLOGY

• NEXT GENERATION SEQUENCING

• GENOMICS (DNA – “OMICS”)

• RNA – “OMICS”

• PROTEOMICS
MGMT GENE PROMOTER METHYLATION AND RISK FOR PSEUDO-PROGRESSION:

- Deceptive, critical to recognize
- Generally within 1-3 months of XRT
- Can occur in high grade glioma, low grade glioma, brain metastasis and other tumor types
- MR perfusion / spectroscopy can assist
- Brain PET scan can be helpful
- Surgical diagnosis
PSEUDO-PROGRESSION RISK:

- HIGHER IN MGMT METHYLATED HIGH GRADE GLIOMAS
- PREDICTIVE VALUE
EXPERIMENTAL THERAPEUTICS AND MOLECULAR PROFILING:

• NRG / RTOG TRIALS
• ALLIANCE TRIALS
• PHARMA TRIALS
• CONVECTION ENHANCED DELIVERY (CED) TRIALS (MEDICENNA MDNA 55 TRIAL, PVS RIPO POLIO VIRUS TRIAL)
EXPERIMENTAL THERAPEUTICS AND MOLECULAR PROFILING:

• REGISTRY TRIALS (SE GLIOMA MOFFITT TRIAL, FLORIDA CENTER FOR BRAIN TUMOR RESEARCH TRIAL / FCBTR, NEOPLASTIC MENINGITIS REGISTRY TRIAL / “NE ME RE” TRIAL)

• COLLABORATIVE TRIALS (SCRIPPS / 3D CELL CULTURE GLIOMA AND DRUG SENSITIVITY TRIAL)

• U OF FLORIDA COLLABORATIVE WORK (FLORIDA NETWORK OF COLLABORATIVE TRIALS)
EGFR MUTATION: NEW GlioBLASTOMA

• RTOG FOUNDATION TRIAL (RTOG 3503, ABBVIE)
• ABT 414 (EGFR TARGETED, MONOCLONAL ANTIBODY / DRUG CONJUGATE)
• NEW GlioBLASTOMA
• DEPATUXIZUMAB / MAFODOTIN
• MICROCYSTIC KERATOPATHY
• REVERSIBLE
MOLECULAR PROFILE DATA REQUIRED: NRG BN 001 NEW GLIOBLASTOMA

- NEWLY DIAGNOSED GBM
- 4 ARM TRIAL
- PHOTONS VERSUS PROTONS
- COMPARING 2 VARIABLES
- HYPOFRACTIONATED DOSE ESCALATED PHOTON IMRT OR PROTON BEAM THERAPY VERSUS CONVENTIONAL IMRT OR PROTON BEAM THERAPY
- MAIN END POINTS: TUMOR CONTROL / COGNITIVE IMPACT
PDL1 MUTATION: NRG BN 002 NEW GLIOBLASTOMA

• NEWLY DIAGNOSED GLIOBLASTOMA
• IPILIMUMAB AND NIVOLUMAB
• WITH STANDARD THERAPIES
• PHASE I PORTION COMPLETED
• PHASE II ABOUT TO OPEN AT NRG
IDH 1 MUTATION: NRG BN 005: LOW GRADE GLIOMA

- HIGH RISK LOW GRADE GLIOMA
- IDH MUTATED TUMORS
- IMRT VERSUS PROTON BEAM THERAPY (PBT)
- PHOTONS VERSUS PROTONS
- TEMOZOLOMIDE
- TRIAL OPEN
- MAIN END POINTS: TUMOR CONTROL / COGNITIVE IMPACT
MOLECULAR PROFILE DATA REQUIRED: NRG BN 003 ATYPICAL MENINGIOMA

• NEW WHO GRADE II MENINGIOMA (ATYPICAL)
• SIMPSON GRADE I, II OR III RESECTION
• UPFRONT IMRT VERSUS OBSERVATION
• MAIN END POINTS: TUMOR CONTROL / COGNITIVE EFFECTS
• TRIAL OPEN
MGMT PROMOTER HYPER - METHYLATION:
ALLIANCE A071102 NEW GLIOBLASTOMA

• MGMT METHYLATED (35%-40% OF PRIMARY GBM)

• ABT – 888 (VELIPARIB)

• PARP INHIBITOR (NEXT GENERATION)

• RANDOMIZED TRIAL

• 50 / 50 RANDOMIZATION

• PLACEBO CONTROLLED
SMO / AKT / NF2 / PTCH MUTATIONS: ALLIANCE A071401 RECURRENT MENINGIOMA

- RECURRENT MENINGIOMA (WHO GRADE I, II OR III)
- FAILED STANDARD THERAPIES (SURGERY, IMRT, SRS, PROTON BEAM)
- SMO / AKT / NF2 / PTCH MUTATIONS POSITIVE MENINGIOMA
- Vismodegib
- GSK 2256098 C
BRAF / MEK MUTATIONS: ALLIANCE A071601
PAPILLARY CRANIOPHARYNGIOMA

• RECURRENT PAPILLARY CRANIOPHARYNGIOMA
• BRAF / MEK INHIBITORS
• VEMURAFENIB
• COBIMETINIB
MOLECULAR PROFILE DATA REQUIRED: NAT – 109
NEW GLIOBLASTOMA

• Newly diagnosed GBM
• NATIVIS VOYAGER SYSTEM DEVICE
• XRT + TEMOZOLOMIDE
MOLECULAR PROFILE DATA REQUIRED: NATIVIS NAT – 101 RECURRENT GLIOBLASTOMA

- RECURRENT GLIOBLASTOMA
- NATIVIS VOYAGER SYSTEM DEVICE + CCNU
A Disruptive Approach to Cancer Treatment

Management Presentation

January 24, 2018 -
1P / 19Q CO – DELETED: ALLIANCE N0577
OLIGODENDROGLIOMA

- OLIGODENDROGLIOMA WHO GRADE II AND III
- 1P / 19Q CO – DELETED
- MGMT METHYLATION
- IDH1, 2 MUTATIONAL STATUS
- PROCARBAZINE, CCNU AND VINCristine (PCV) VERSUS Temozolomide
IDH 1 UN – MUTATED: MDNA 55 RECURRENT GLIOBLASTOMA

• INTRA-TUMORAL IMMUNOTOXIN

• SURGERY NEEDED

• CONVECTION ENHANCED DELIVERY (CED) TRIAL

• DIRECT INTRA – TUMORAL INFUSION OF IMMUNOTOXIN
MOLECULAR PROFILE DATA REQUIRED: POLIO VIRUS TRIAL / PVS RIPO

• RECURRENT GLIOBLASTOMA
• INTRA-TUMORAL VIRUS INJECTION
• DUKE COLLABORATION
• CONVECTION ENHANCED DELIVERY (CED) TRIAL
MOLECULAR PROFILE DATA REQUIRED: ALLIANCE A031102 RECURRENT AND REFRACTORY GERM CELL TUMORS

- PACLITAXEL + IFOSFAMIDE + CISPLATINUM (TIP) COMPARED WITH PACLITAXEL + IFOSFAMIDE FOLLOWED BY HIGH DOSE CARBOPLATIN + ETOPOSIDE (TI – CE)
- PHASE III TRIAL
- RELAPSED AND RECURRENT GERM CELL TUMORS
- COULD BE EXTRA CRANIAL / SYSTEMIC OR INTRA CRANIAL
MOLECULAR PROFILE DATA REQUIRED: ALLIANCE EAF
151 RELATIVE CEREBRAL BLOOD VOLUME AFTER BEVACIZUMAB

• RELATIVE CEREBRAL BLOOD VOLUME (R - CBV) MEASUREMENT FOLLOWING BEVACIZUMAB FOR RECURRENT GBM

• AS A BIOMARKER OF EARLY RESPONSE

• WHETHER CONTINUATION OF BEVACIZUMAB IS HELPFUL OR UN HELPFUL

• COST EFFECTIVITY

• TO DISCONTINUE BEVACIZUMAB WHEN INEFFECTIVE
ALLIANCE A221101 FATIGUE TRIAL:

• GBM FATIGUE
• ARMODAFINIL TRIAL
BRAIN METASTASIS:

• NRG CC 001 TRIAL: WHOLE BRAIN XRT WITH OR WITHOUT HIPPOCAMPAL AVOIDANCE WITH MEMANTINE (NAMENDA)

• NRG CC 003 TRIAL: SCLC WHOLE BRAIN XRT WITH OR WITHOUT HIPPOCAMPAL AVOIDANCE (MEMANTINE OPTIONAL)
POST SRS RADIO-NECROSIS:

• ALLIANCE A221208 POST SRS NECROSIS
• BEST TRIAL
• BEVACIZUMAB + STEROIDS VERSUS PLACEBO + STEROIDS
CNS METASTASIS:

• COMPREHENSIVE GENOMIC PROFILE OF THE PRIMARY TUMOR MAY DIFFER FROM THE CNS METASTATIC DEPOSIT / DEPOSITS

• ALLIANCE TRIAL BEING DEVELOPED LOOKING AT MOLECULAR PROFILE OF THE CNS DEPOSIT AND TREATING THE CNS METASTASIS WITH STEREOTACTIC RADIOSURGERY (AS CYBER KNIFE OR GAMMA KNIFE) ALONG WITH THE APPROPRIATE AGENT (ACTIONABLE MUTATIONS)

• T790M MUTATION = OSIMERTINIB

• ALK EMLA4 MUTATION = CRIZOTINIB OR ALECTINIB
CASE 1: PATIENT “DP”

• 27 YEAR OLD WITH A RECURRENT GLIOBLASTOMA
• ALREADY RECEIVED AND FAILED: 2 OPERATIONS, 2 COURSES OF RADIATION, TEMOZOLOMIDE
• BRAF V600 E MUTATION POSITIVE: VEMURAFENIB + TEMOZOLOMIDE METRONOMIC (PROLONGED POSITIVE RESPONSE)
• FURTHER PROGRESSION
• PDL1 MUTATION: PEMBROLIZUMAB
• AT PROGRESSION WE PLAN TO ADD BEVACIZUMAB TO PEMBROLIZUMAB
• CLINICAL TRIAL OPTIONS
CASE 2: PATIENT “PV”

• YOUNG MAN IN HIS 40’S
• NEWLY DIAGNOSED WHO GRADE II OLIGODENDROGLIOMA
• 1P / 19Q CO – DELETED, MGMT PROMOTER HYPER METHYLATED, IDH1 MUTATED
• “TRIPLE POSITIVE”: POSITIVE PROGNOSTIC COMPREHENSIVE GENOMIC PROFILE
• ENROLLED UPON ALLIANCE N0577 TRIAL: IMRT + TEMOZOLOMIDE OR PCV
CASE 3: PATIENT “BB”

• PATIENT IN HIS 50’S
• RECURRENT AND PROGRESSIVE WHO GRADE II ATYPICAL MENINGIOMA
• FAILED SURGERY AND IMRT
• REPEAT SURGERY WAS DEEMED HIGH RISK
• NF2 MUTATION POSITIVE
• ALLIANCE A071401 RECURRENT MENINGIOMA TRIAL FOR TUMORS WITH SMO / AKT / NF2 / PTCH MUTATIONS
• NF2 MUTATION: GSK 2256098 C (FOCAL ADHESION KINASE / FAK INHIBITOR)
• ORAL AGENT
• STABLE DISEASE THUS FAR
CASE 4: PATIENT “CN”

- Patient in her 50’s
- Newly diagnosed glioblastoma
- MGMT gene promoter methylated
- Alliance A071102 ABT – 888 (Veliparib) trial
- MGMT methylated GBM more responsive to this PARP inhibitor
- XRT + Temozolomide + ABT – 888 / or placebo
- Upon progression: Medicenna MDNA 55 CED trial / just enrolled
CASE 5: PATIENT “ND”

- PATIENT IN HIS 60’S
- NEW GBM
- WAS ON NATIVIS NAT 109 TRIAL
- XRT + TMZ
- IDH UN - MUTATED
- UPON PROGRESSION ON MEDICENNA MDNA 55 CED TRIAL
POLIO VIRUS TRIAL: PVSRIPO

• RECURRENT GBM
• STRINGENT ENROLLMENT CRITERIA
• DUKE COLLABORATIVE WORK
Combinatorial Mechanisms of Action:

- Direct Cytotoxicity
 - Immunogenic cell death
 - Viral Oncolytic activity

- Enhanced Antigen Presentation
 - Induction of adaptive immune responses
 - Epitope Spreading

- Immune cell activation
 - Increased Lymphocyte Infiltration
 - Reversal of T-cell exhaustion
 - Attenuation of Immunosuppression
 - Cell mediated cytotoxicity
 - Memory T-cell formation
due to their abundance of a certain protein.

2. **Virus** infects and damages tumor, releasing tumor antigen and broadcasting a danger signal...

3. ...which causes **neutrophils** to invade and attack.

4. **T-cells** destroy the tumor.
<table>
<thead>
<tr>
<th>Group</th>
<th>Total No. of Patients</th>
<th>No. of Deaths</th>
<th>Median Survival (95% CI)</th>
<th>Survival Rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 Mo</td>
<td>12 Mo</td>
</tr>
<tr>
<td>PVSRlPO</td>
<td>61</td>
<td>44</td>
<td>12.5 (9.9–15.2)</td>
<td>90 (79–96)</td>
</tr>
<tr>
<td>Control</td>
<td>104</td>
<td>103</td>
<td>11.3 (9.8–12.5)</td>
<td>77 (68–84)</td>
</tr>
</tbody>
</table>

No. at Risk

<table>
<thead>
<tr>
<th>Group</th>
<th>61</th>
<th>55</th>
<th>29</th>
<th>10</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVSRlPO</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>104</td>
<td>80</td>
<td>47</td>
<td>24</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>–</td>
</tr>
</tbody>
</table>

Patients Who Survived (%) vs Time to Death or Last Follow-up (mo)
Recurrent Glioblastoma Treated with Recombinant Poliovirus

Annick Desjardins, M.D., Matthias Gromeier, M.D., James E. Herndon II, Ph.D., Nike Beaubier, M.D., Dani P. Bolognesi, Ph.D., Allan H. Friedman, M.D., Henry S. Friedman, M.D., Frances McSherry, M.A., Andrea M. Muscat, B.Sc., Smita Nair, Ph.D., Katherine B. Peters, M.D., Ph.D., Dina Randazzo, D.O., John H. Sampson, M.D., Ph.D., Gordana Vlahovic, M.D., William T. Harrison, M.D., Roger E. McLendon, M.D., David Ashley, M.B., B.S., Ph.D., and Darell D. Bigner, M.D., Ph.D.
UPCOMING IMPORTANT MEETINGS:

• ALLIANCE MEETING: NOVEMBER 1ST – 3RD, 2018 (CHICAGO)

• NRG MEETING: FEBRUARY 7TH – 9TH, 2019 (PHILADELPHIA)

• SOCIETY FOR NEURO-ONCOLOGY (SNO) MEETING: NOVEMBER 15TH – 18TH, 2018 (NEW ORLEANS)